

BlueDragon TM 7.1
CFML Enhancements Guide

BlueDragon 7.1 CFML Enhancements Guide i

N E W A T L A N T A C O M M U N I C A T I O N S , L L C

BlueDragon™ 7.1
CFML Enhancements Guide

May 11, 2009
Version 7.1

Copyright © 1997-2009 New Atlanta Communications, LLC. All rights reserved.
100 Prospect Place • Alpharetta, Georgia 30005-5445

Phone 678.256.3011 • Fax 678.256.3012
http://www.newatlanta.com

BlueDragon is a trademark of New Atlanta Communications, LLC (“New Atlanta”). ServletExec and JTurbo are
registered trademarks of New Atlanta in the United States. Java and Java-based marks are trademarks of Sun Micro-
systems, Inc. in the United States and other countries. ColdFusion is a registered trademark of Adobe Systems In-
corporated (“Adobe”) in the United States and/or other countries, and its use in this document does not imply the
sponsorship, affiliation, or endorsement of Adobe. All other trademarks and registered trademarks herein are the
property of their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org).

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise without the prior written consent of New Atlanta.

New Atlanta makes no representations or warranties with respect to the contents of this document and specifically
disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, New Atlanta re-
serves the right to revise this document and to make changes from time to time in its content without being obli-
gated to notify any person of such revisions or changes.

The Software described in this document is furnished under a Software License Agreement (“SLA”). The Software
may be used or copied only in accordance with the terms of the SLA. It is against the law to copy the Software on
tape, disk, or any other medium for any purpose other than that described in the SLA.

http://www.newatlanta.com/�

BlueDragon 7.1 CFML Enhancements Guide ii

Contents

1 INTRODUCTION ... 1

1.1 About This Manual ... 1

1.2 BlueDragon Product Configurations .. 1

1.3 Technical Support .. 1

1.4 Additional Documentation ... 2

2 OVERVIEW OF ENHANCEMENTS .. 3

2.1 Enhanced Features in BlueDragon ... 3

3 CFML VARIABLES ... 5

3.1 SERVER Variables .. 5

4 CFML TAGS .. 5

4.1 Enhancements Regarding ColdFusion Components (CFCs) .. 5

4.2 Enhanced CFML Tags ... 5
4.2.1 CFCOMPONENT ... 5
4.2.2 CFCOLLECTION ... 7
4.2.3 CFHART ... 7
4.2.4 CFDOCUMENT ..10
4.2.5 CFDUMP ...11
4.2.6 CFERROR, CFTRY/CFCATCH, and try/catch ...12
4.2.7 CFFLUSH ..13
4.2.8 CFFUNCTION ...13
4.2.9 CFINCLUDE ...13
4.2.10 CFINDEX ...14
4.2.11 CFINVOKE ..16
4.2.12 CFLOCATION ...16
4.2.13 CFMAIL ...16
4.2.14 CFMAILPARAM ...16
4.2.15 CFOBJECT ..16
4.2.16 CFOBJECTCACHE ...16
4.2.17 CFPROCPARAM ..17
4.2.18 CFQUERY ...17
4.2.19 CFQUERYPARAM ...21
4.2.20 CFSEARCH ...21
4.2.21 CFSET (Multi-dimensional arrays) ..22
4.2.22 CFXML ..22

4.3 New CFML Tags..22
4.3.1 CFASSERT ..22
4.3.2 CFBASE ...23
4.3.3 CFCACHECONTENT ...23
4.3.4 CFCONTINUE ...25
4.3.5 CFDEBUGGER ...25
4.3.6 CFFORWARD ...26
4.3.7 CFIMAGE ..26
4.3.8 CFIMAP ...29
4.3.9 CFINTERRUPT ...34
4.3.10 CFJOIN ..35

BlueDragon 7.1 CFML Enhancements Guide iii

4.3.11 CFMAPPING ...35
4.3.12 CFPAUSE ..36
4.3.13 CFTHREAD ...36
4.3.14 CFTHROTTLE ..37
4.3.15 CFXMLRPC ...38
4.3.16 CFZIP and CFZIPPARAM ..39

CFML FUNCTIONS .. 41

4.4 Enhanced CFML Functions ...41
4.4.1 CreateObject ...41
4.4.2 ListToArray ..41
4.4.3 ParagraphFormat ..41
4.4.4 StructNew ...41
4.4.5 XMLSearch ..42
4.4.6 XMLParse ..42
4.4.7 XMLTransform ..42

4.5 New CFML Functions ...42
4.5.1 Assert ..42
4.5.2 GetAllThreads ..43
4.5.3 GetHttpContext ..43
4.5.4 IsNull ..43
4.5.5 ListRemoveDuplicates ...43
4.5.6 ThreadInterrupt ...44
4.5.7 ThreadIsAlive ...44
4.5.8 ThreadJoin ..44
4.5.9 ThreadRunningTime ..44
4.5.10 ThreadStop ...44
4.5.11 QueryDeleteRow ..45
4.5.12 QuerySort ...45
4.5.13 Render ..46

5 MISCELLANEOUS ENHANCEMENTS .. 47

5.1 “null” keyword and IsNull() function ..47
5.1.1 Database nulls...47
5.1.2 Java Methods ..47
5.1.3 CFC Functions ..48

5.2 Application.cfc ...49
5.2.1 onClientStart() Event Handler ..49
5.2.2 onMissingTemplate() Event Handler ...50

5.3 Application.cfm ..50

5.4 Option to Support Relative Paths in Tags Requiring Absolute ...51

5.5 Integrating JSP/Servlets Alongside CFML Templates ..51

5.6 Integrating ASP.NET Alongside CFML Templates ...52

5.7 XML Handling ...52
5.7.1 Case Sensitivity ..52
5.7.2 Assignment of New Nodes ...52
5.7.3 XML Array Processing...53

5.8 Whitespace Compression ..53

5.9 Error handling enhancements ..53

BlueDragon 7.1 CFML Enhancements Guide 1

BlueDragon 7.1
CFML Enhancements Guide

1 Introduction

lueDragon is a family of server-based products for deploying dynamic web applications
developed using the ColdFusion® Markup Language (CFML). CFML is a popular
server-side, template-based markup language that boasts a rich feature set and renowned

ease-of-use. BlueDragon provides a high-performance, reliable, standards-based environment for
hosting CFML web applications, and enables the integration of CFML with the Microsoft .NET
Framework and Java Platform, Enterprise Edition (Java EE) technologies.

1.1 About This Manual
The BlueDragon implementation of CFML is designed to be compatible with Adobe ColdFusion
MX 7.0.2. However, there are a large number of CFML enhancements in BlueDragon that are
not supported by CFMX 7.0.2 or any earlier version of ColdFusion.

This BlueDragon 7.1 CFML Enhancements Guide describes the enhanced CFML tags and func-
tions found only in BlueDragon. Developers currently working with ColdFusion should also be
aware of differences in CFML compatibility between BlueDragon and ColdFusion, which are
discussed in the associated manual, BlueDragon 7.1 CFML Compatibility Guide.

1.2 BlueDragon Product Configurations
BlueDragon is currently available in three product configurations. Details about these configura-
tions—BlueDragon Server JX, BlueDragon for Java EE Servers, and BlueDragon for the Micro-
soft .NET Framework—are provided in other related manuals, discussed in the Additional Do-
cumentation section below. Except where explicitly noted, all references to “BlueDragon” in this
document refer to all product configurations.

1.3 Technical Support
If you’re having difficulty installing or using BlueDragon, visit the self-help section of the New
Atlanta web site for assistance:

http://www.newatlanta.com/products/bluedragon/self_help/index.cfm

In the self-help section, you’ll find documentation, FAQs, a feature request form, and a suppor-
tive discussion forum staffed by both customers and New Atlanta engineers.

Details regarding paid support options, including online-, telephone-, and pager-based support
are available from the New Atlanta web site:

http://www.newatlanta.com/biz/support/index.jsp

B

http://www.newatlanta.com/products/bluedragon/self_help/index.cfm�
http://www.newatlanta.com/biz/support/index.jsp�

BlueDragon 7.1 CFML Enhancements Guide 2

1.4 Additional Documentation
The other manuals available in the BlueDragon documentation library are:

• What’s New in BlueDragon 7.1

• BlueDragon 7.1 CFML Compatibility Guide

• BlueDragon 7.1 Server JX Installation Guide

• BlueDragon 7.1 User Guide

• Deploying CFML on Java EE Application Servers

• Deploying CFML on ASP.NET and the Microsoft .NET Framework

• Integrating CFML with ASP.NET and the Microsoft .NET Framework

Each offers useful information that may be relevant to developers, installers, and administrators,
and they are available in PDF format from New Atlanta’s web site:

http://www.newatlanta.com/products/bluedragon/self_help/docs/index.cfm

http://www.newatlanta.com/products/bluedragon/self_help/docs/index.cfm�

BlueDragon 7.1 CFML Enhancements Guide 3

2 Overview of Enhancements
The BlueDragon implementation of CFML is designed to be compatible with Adobe ColdFusion
MX 7.0.2. However, there are a large number of CFML enhancements in BlueDragon—as
described in this document—that are not supported by CFMX 7.0.2 or any earlier version of
ColdFusion.

As you consider the many enhancements that BlueDragon offers, some will be more compelling
than others. While this document presents them in alphabetical order by tags and functions, the
following highlights some of the more significant enhancements.

2.1 Enhanced Features in BlueDragon
The following enhancements are new in BlueDragon 7.1:

• CFIMAGE enhancements

The following enhancements are new in BlueDragon 7.0:

• Multi-threaded programming via CFTHREAD and related tags and functions

• CFC interfaces and abstract CFCs (see CFCOMPONENT and CFFUNCTION)

• “null” keyword and IsNull() function

• CFQUERY enhancements

o CACHEDUNTILCHANGE attribute

o BACKGROUND attribute

• Application.cfc enhancements

o onClientStart() event handler

o onMissingTemplate() event handler

• CFDOCUMENT support for PNG and JPEG formats, and additional enhancements

• CFCHART enhancements

The following enhancements were introduced in BlueDragon 6.2.1 or earlier releases:

• CFC enhancements (serialization, duplication, and more)

• Application-level path mapping with CFMAPPING

• Site spidering via CFINDEX or admin console

• Support for CFQUERYPARAM within a Cached Query

• Enhanced query caching and cache management (see CFQUERY)

• Enhanced page content caching (including caching to disk, see CFCACHECONTENT)

• Ability to render CFML dynamically from a variable or query (see Render())

• Easy include of JSP or ASP.NET page output with CFINCLUDE PAGE

BlueDragon 7.1 CFML Enhancements Guide 4

• Easy transfer of control to another CFML, JSP, or ASP.NET page via CFFORWARD

• Error logging and processing (see CFERROR)

• Available CFML execution tracing with CFDEBUGGER

• Various CFDUMP enhancements

• Support for assertions (see CFASSERT and Assert())

• Support for request throttling (see CFTHROTTLE)

• Image processing via CFIMAGE

• ZIP file creation and extraction using CFZIP

• IMAP mail processing with CFIMAP

• XMLRPC request processing using CFXMLRPC

• Enhanced page buffering via CFFLUSH

• Enhanced mail file attachments via CFMAILPARAM

• Enhanced control over CFSEARCH and enhanced metadata in returned results

• Freedom to use relative paths in many tags, using URIDIRECTORY attribute

• Ability to continue a CFLOOP with CFCONTINUE

• Ability to temporarily halt page execution with CFPAUSE

• Ability to sort query results with QuerySort()

• Ability to delete rows from a query resultset using QueryDeleteRow()

• Ability to remove duplicate list entries with ListRemoveDuplicates()

• Ability to pass in XSTL arguments on XMLTransform()

• Ability to process Application.cfm even when a requested file is not present

These are just some of the enhancements. There are dozens more, as discussed throughout this
document.

Finally, the .NET edition of BlueDragon offers many unique enhancements. While many of them
are about integration with ASP.NET and the .NET Framework, as spelled out in the manual,
Integrating CFML with ASP.NET and the Microsoft .NET Framework, some are simply en-
hancements to CFML that could benefit traditional CFML developers:

• Support for DSN-less connections in database tags like CFQUERY, CFSTOREDPROC

• Extension of CFOBJECT and CreateObject() to invoke .NET objects

• Support of TIMEOUT on CFINVOKE of Web Services

• GetHttpContext() function to provide additional request metadata

BlueDragon 7.1 CFML Enhancements Guide 5

3 CFML Variables

3.1 SERVER Variables
BlueDragon offers its own identifying structure within the predefined Server scope, as
Server.BlueDragon, which contains the following variables:

Server.BlueDragon.Edition identifies the edition:

7 – BlueDragon Server JX
8 – BlueDragon for Java EE
9 – BlueDragon for Microsoft .NET

Server.BlueDragon.Mode identifies the license mode:
0 – development
1 - evaluation (time-limited)
2 - full production

As in ColdFusion, these pre-defined Server scope variables are read-only.

4 CFML Tags

4.1 Enhancements Regarding ColdFusion Components (CFCs)
There are a few enhancements in CFC (ColdFusion Component) processing in BlueDragon:

• CFC instances can be duplicated using the Duplicate() function

• CFC instances can be serialized (useful with Java EE and .NET session support, and
where session replication or persistence requires this)

• CFC instances can be correctly passed roundtrip using web services (from CFMX to BD,
but not the other way around)

• BlueDragon does not restrict use of tags before use of CFSET VAR

See additional enhancements related to CFC interfaces and abstract CFCs described for the
CFCOMPONENT and CFFUNCTION tags.

4.2 Enhanced CFML Tags
This section lists CFML tag enhancements that are unique to BlueDragon.

4.2.1 CFCOMPONENT
BlueDragon 7.0 introduces support for CFC interfaces and abstract CFCs via enhancements to
the CFCOMPONENT and CFFUNCTION tags. The What’s New in BlueDragon 7.1 document contains
an introduction to CFC interfaces and abstract CFCs, including several code examples.

BlueDragon 7.1 CFML Enhancements Guide 6

The new TYPE attribute has been added to the CFCOMPONENT tag. The TYPE attribute can be one
of: COMPONENT, INTERFACE, or ABSTRACT. The TYPE attribute is optional and defaults to
COMPONENT. For backwards-compatibility, if the TYPE attribute is set to anything other than one
of these three values, the type defaults to COMPONENT.

If TYPE="COMPONENT" is specified, the CFCOMPONENT tag behaves exactly as it does in previous
versions of BlueDragon. These are referred to as “concrete” CFCs to distinguish them from ab-
stract CFCs and interfaces. A concrete CFC may not contain any abstract functions (see the
CFFUNCTION tag for a discussion of abstract functions).

4.2.1.1 Abstract CFCs
If TYPE="ABSTRACT" is specified (creating an “abstract” CFC), the CFC may not be instantiated
directly using the CFOBJECT tag or CreateObject() function. Abstract CFCs may only be used
as base classes by other CFCs; that is, other CFCs may extend abstract CFCs.

An abstract CFC may contain both concrete and abstract functions (see CFFUNCTION, below), and
will normally contain at least one abstract function (though an abstract CFC is not required to
have any abstract functions). A CFC must declare TYPE="ABSTRACT" if it contains one or more
abstract functions.

A CFC that extends an abstract CFC must either implement all abstract functions defined by the
abstract CFC, or the subclass CFC must itself be declared abstract. A CFC that extends an ab-
stract CFC may not invoke abstract functions via the “super” keyword.

An abstract CFC may be specified as the TYPE attribute for the CFARGUMENT tag, or as the
RETURNTYPE attribute for the CFFUNCTION tag.

4.2.1.2 CFC Interfaces
If TYPE="INTERFACE" is specified (creating a CFC “interface”), the CFC may not be instantiated
directly using the CFOBJECT tag or CreateObject() function. CFC interfaces may only contain
abstract functions (see CFFUNCTION, below).

A CFC interface may only extend another interface; an interface may not extend an abstract or
concrete CFC.

A CFC may declare that it implements one or more CFC interfaces using the new IMPLEMENTS
attribute of the CFCOMPONENT tag. A CFC may implement multiple interfaces by declaring them
as a comma-separated list for the IMPLEMENTS attribute value. A CFC must provide concrete im-
plementations of all abstract functions defined by all interfaces specified in the IMPLEMENTS
attribute.

A CFC interface may be specified as the TYPE attribute for the CFARGUMENT tag, or as the
RETURNTYPE attribute for the CFFUNCTION tag.

BlueDragon 7.1 CFML Enhancements Guide 7

4.2.2 CFCOLLECTION
In BlueDragon, CFCOLLECTION does not require use of a PATH attribute (for indicating where the
collection should be stored). If not specified, it defaults to creating the collection in
[bluedragon]\work\cfcollection\.

CFCOLLECTION also supports a new, optional WAIT attribute. See the discussion under CFINDEX in
section 4.2.10.2.

4.2.3 CFHART
BlueDragon 7.0 introduced a number of enhancements to the CFCHART tag and its sub-tags.

CFCHART can be configured via the BlueDragon administration console to store the generated
charts to a file, within the session scope, or to a datasource. Session or datasource storage should
be used in clustered environments.

CFCHART in BlueDragon 7.1 supports category charts with y values as symbols. These charts are
generated by setting the YAXISTYPE attribute value to “symbols” and setting the new
YAXISSYMBOLS attribute to a comma-separated list of symbols. If the symbols contain commas
then a different separator can be specified by using the new SYMBOLSSEPARATOR attribute.

The new DEFAULT attribute can be used to easily give many charts the same look-and-feel. This
is done by assigning this attribute the location of a file that contains a CFCHART tag. The attribute
values for the CFCHART tag in this file will be used as the default values for the CFCHART tag.

The new MAXCATEGORYLABELLINES attribute specifies the maximum number of lines that can be
used for a category label. Category labels that need to be displayed on more than the maximum
number of lines are truncated. The default value is 5.

The new YAXISUNITS attribute specifies the units that are used for the tick marks on the y-axis.
For example, if this attribute is set to 10 then the y-axis tick marks would be labeled 0, 10, 20,
30, etc.

The new XAXISUPPERMARGIN attribute indicates how much of a margin is used on the x-axis.
This value is specified as a percentage of the last x value. For example, if the last x value is 100
and this attribute is set to .1 then the x-axis will have a margin of 10. The default value is .05.

The new YAXISUPPERMARGIN attribute indicates how much of a margin is used on the y-axis.
This value is specified as a percentage of the last y value. For example, if the last y value is 100
and this attribute is set to .1 then the y-axis will have a margin of 10. The default value is .05.

4.2.3.1 CFCHARTSERIES
In BlueDragon 7.0, the MARKERSTYLE attribute has added support for the values TRIANGLEDOWN,
TRIANGLERIGHT, TRIANGLELEFT, HORIZONTALRECTANGLE, and VERTICALRECTANGLE.

The TYPE attribute has added support for the value RING.

BlueDragon 7.1 CFML Enhancements Guide 8

The DATALABELSTYLE attribute also accepts a string that contains the following markers: {0},
{1}, {2}, {3} and {4}. These markers are replaced by the following values:

{0} – replaced by the series label

{1} – replaced by the category name or x-value

{2} – replaced by the y-value

{3} – replaced by the percent of the y-value of the total of all the y-values in the series

{4} – replaced by the total of all the y-values in the series

The new NEGATIVEDATALABELPOSITION attribute specifies the position of the data labels relative
to the data points for negative values. The valid values are TOP, TOP_INSIDE, LEFT,
LEFT_INSIDE, CENTER, RIGHT_INSIDE, RIGHT, BOTTOM_INSIDE and BOTTOM. The XXX_INSIDE
values are only relevant for bar and horizontalbar charts.

The new POSITIVEDATALABELPOSITION attribute specifies the position of the data labels relative
to the data points for positive values. The valid values are TOP, TOP_INSIDE, LEFT,
LEFT_INSIDE, CENTER, RIGHT_INSIDE, RIGHT, BOTTOM_INSIDE and BOTTOM. The XXX_INSIDE
values are only relevant for bar and horizontalbar charts.

The new DATALABELANGLE attribute specifies the angle in degrees that the data labels are rotated.
For positive values the data labels are rotated in a clockwise direction.

The new DATALABELCOLOR attribute specifies the color of the data labels.

The new DATALABELFONT attribute specifies the font used by the data labels.

The new DATALABELFONTBOLD attribute specifies if the data labels are bold.

The new DATALABELFONTITALIC attribute specifies if the data labels are italic.

The new DATALABELFONTSIZE attribute specifies the font size of the data labels.

4.2.3.2 CFCHARTRANGEMARKER
BlueDragon 7.0 introduced the CFCHARTRANGEMARKER tag, which is used to add a range marker
to the y-axis. One or more of these tags can be placed within a CFCHART tag. The
CFCHARTRANGEMARKER tag attributes are:

START – the start value on the y-axis for the marker

END – the end value on the y-axis for the marker

COLOR – the color of the marker

LABEL – the label for the marker

LABELCOLOR – the color of the marker label

BlueDragon 7.1 CFML Enhancements Guide 9

LABELPOSITION – the position of the label in the marker; valid values are: TOP_LEFT,
TOP, TOP_RIGHT, LEFT, CENTER, RIGHT, BOTTOM_LEFT, BOTTOM, and BOTTOM_RIGHT

FONT – the font used by the marker label

FONTBOLD – specifies if the marker label is bold

FONTITALIC – specifies if the marker label is italic

FONTSIZE – specifies the font size of the marker label

4.2.3.3 CFCHARTDOMAINMARKER
BlueDragon 7.0 introduced the CFCHARTDOMAINMARKER tag, which is used to add a domain
marker to the x-axis. One or more of these tags can be placed within a CFCHART tag. The
CFCHARTDOMAINMARKER tag attributes are:

VALUE – the x-value to be highlighted by the marker

COLOR – the color of the marker

SHAPE – the shape of the marker; valid values are LINE or REGION; the default value is
LINE

LABEL – the label for the marker

LABELCOLOR – the color of the marker label

LABELPOSITION – the position of the marker label; valid values are: TOP_LEFT, TOP,
TOP_RIGHT, LEFT, CENTER, RIGHT, BOTTOM_LEFT, BOTTOM and BOTTOM_RIGHT

FONT – the font used by the marker label

FONTBOLD – specifies if the marker label is bold

FONTITALIC – specifies if the marker label is italic

FONTSIZE - specifies the font size of the marker label

4.2.3.4 CFCHARTLEGEND
BlueDragon 7.0 introduced the CFCHARTLEGEND tag, which is used to configure the legend of the
generated chart. Only one of these tags can be placed within a CFCHART tag. The
CFCHARTLEGEND tag attributes are:

BACKGROUNDCOLOR – the color of the legend background

LABELCOLOR – the color of the labels in the legend

FONT – the font used for the labels in the legend

FONTBOLD – specifies if the legend labels are bold

FONTITALIC – specifies if the legend labels are italic

FONTSIZE – specifies the font size of the legend labels

POSITION – specifies the position of the legend relative to the generated chart; valid val-
ues are: TOP, BOTTOM, LEFT and RIGHT

BlueDragon 7.1 CFML Enhancements Guide 10

SHOWBORDER – specifies if a border is displayed around the legend

4.2.3.5 CFHARTTITLE
BlueDragon 7.0 introduced the CFCHARTTITLE tag, which is used to configure the title(s) of the
generated chart. One or more of these tags can be placed within a CFCHART tag. The
CFCHARTTITLE tag attributes are:

TEXT – the text for the title

BACKGROUNDCOLOR – the color of the title background

LABELCOLOR – the color of the title text

FONT – the font used for the title text

FONTBOLD – specifies if the title text is bold

FONTITALIC – specifies if the title text is italic

FONTSIZE – specifies the font size of the title text

POSITION - specifies the position of the title relative to the generated chart; valid values
are: TOP, BOTTOM, LEFT and RIGHT

SHOWBORDER – specifies if a border is displayed around the title

PADDING – specifies the number of pixels used to add padding space around the title

MARGIN – specifies the number of pixels used as a margin between the title and other ob-
jects in the chart

4.2.3.6 CFCHARTIMAGE
The CFCHARTIMAGE tag is used to configure an image for the chart background. Only one of
these tags can be placed within a CFCHART tag. The CFCHARTIMAGE tag attributes are:

FILE – Required. The path to a GIF or JPG image file; can be either a full physical path
or a relative path (see the URIDIRECTORY attribute).

URIDIRECTORY – Optional. Set to YES/TRUE to specify a relative path from the web server
document root directory in the FILE attribute. Set to NO/FALSE to specify a full physical path in
the FILE attribute. Defaults to NO/FALSE.

ALIGNMENT – Optional. Determines how the image is aligned in the background of the
chart. Valid values are: TOP_LEFT, TOP, TOP_RIGHT, LEFT, CENTER, RIGHT, BOTTOM_LEFT,
BOTTOM, BOTTOM_RIGHT, FIT, FIT_HORIZONTAL and FIT_VERTICAL. Defaults to FIT.

4.2.4 CFDOCUMENT
The CFDOCUMENT tag and its CFDOCUMENTITEM and CFDOCUMENTSECTION sub-tags were intro-
duced in CFMX 7 for rendering PDF and FlashPaper documents.

BlueDragon 7.1 CFML Enhancements Guide 11

The BlueDragon 7.0 implementation of the CFDOCUMENT tag and its sub-tags is compatible with
CFMX 7.0.2, except that BlueDragon supports PNG and JPEG output formats instead of Flash-
Paper. BlueDragon also introduces several enhancements that are described below.

4.2.4.1 FORMAT attribute values “png” and “jpg”
BlueDragon 7.0 does not support “FlashPaper” as a value for the FORMAT attribute. BlueDragon
7.0 supports “pdf”, and introduces the new “png”, “jpg”, and “jpeg” values. Using “png”, “jpg”,
or “jpeg” produces an image of the first page of the URL or CFDOCUMENT body based on the page
size, margins, and specified scale. Such images are useful for creating “thumbnails” of web
pages.

4.2.4.2 UNIT attribute value “px”
In addition to “in” and “cm”, BlueDragon 7.0 introduced the new “px” value for the UNIT
attributes to define page and margin sizes in pixels. This is particularly useful when creating im-
ages using the “png”, “jpg”, or “jpeg” values for the FORMAT attribute.

4.2.4.3 TIMEOUT attribute
BlueDragon 7.0 introduced the new timeout attribute to control the CFDOCUMENT rendering time.
The attribute value unit is seconds; the default value is 60; a value of 0 indicates an infinite time-
out. An exception is thrown if the CFDOCUMENT tag has not finished rendering before the timeout
value expires.

4.2.4.4 WATERMARK and WATERMARKIMAGE attributes
BlueDragon 7.0 introduced the new WATERMARK and WATERMARKIMAGE attributes. The WATERMARK
attribute accepts a text value that is used to create a slightly transparent watermark in the back-
ground of in the resulting PDF.

The WATERMARKIMAGE attribute accepts either the name of an image file, which must be in the
same directory as the CFML page, or the full absolute file system path to an image file. The im-
age will be stretched across each page and will be rendered with slight transparency. Using a .gif
or .jpg with transparency works best; images with white backgrounds will fade the document
contents noticeably.

4.2.4.5 AUTHOR, SUBJECT, TITLE, and KEYWORDS attributes
BlueDragon 7.0 introduced several new attributes that correspond to PDF document metadata
attributes: AUTHOR, SUBJECT, TITLE, and KEYWORDS.

4.2.5 CFDUMP
BlueDragon’s CFDUMP output is enhanced in various ways.

4.2.5.1 AutoExpansion of Nested Structures and Arrays
BlueDragon expands the values of arrays, structures, and other nested objects, providing more
information to assist in debugging.

BlueDragon 7.1 CFML Enhancements Guide 12

4.2.5.2 VAR is Optional, Automatic Dump of Several Scopes
While the CFDUMP tag VAR attribute is required in ColdFusion, it is optional in BlueDragon; if
omitted, variables in all scopes (except the CGI and SERVER scopes) are displayed:

<CFDUMP VAR=”#SESSION#”> <!--- display SESSION variables --->

<CFDUMP> <!--- display variables in all scopes but cgi, server --->

Of course, it’s permissible to dump the CGI and SERVER scopes by specifying either of them in
the VAR attribute. They’re just not dumped automatically with the special form of CFDUMP.

4.2.5.3 Additional Information Offered in Dump of Queries
The CFFDUMP output for query result sets shows additional information about the query including
the datasource name, the SQL processed, the execution time, the number of records found, and
the size in bytes.

4.2.5.4 Available VERSION Attribute to Expand Queries and XML
BlueDragon’s dump can show all the records in a query resultset, as well as expanded informa-
tion about XML objects. This is controlled with an optional VERSION attribute, which takes two
values: LONG and SHORT. The default for query result sets is LONG. It applies to CFDUMP both with
and without use of the VAR attribute, as described above.

In the SHORT version, a dump of query result set will not show the actual records from the query,
but will show other useful information about the query (records found, execution time, SQL
string, etc.).

The dump of an XML object will work similarly to the long and short versions available in
ColdFusion MX. Whereas in ColdFusion MX, you would click on the displayed XML object to
cause it to switch between short and long versions, in BlueDragon you choose the alternative
using the VERSION attribute. The default is SHORT.

Currently, only query result sets and XML documents are affected by the VERSION attribute, and
it has no effect for other variable types (they can be dumped, but the result is not varied by speci-
fication of the VERSION attribute). Similarly, the VERSION attribute setting does not affect query
resultsets or XML documents that are contained within another variable or structure being
dumped. They use their respective defaults.

4.2.6 CFERROR, CFTRY/CFCATCH, and try/catch
BlueDragon offers an enhancement in error log processing, in that it writes out to a log file the
entire error page that would be displayed to a user if the error was not handled. See section 5.9
for additional information.

As of 6.2, that error log page is written even when the error is handled, as with CFERROR. A new
variable is available in the CFERROR and ERROR scopes (as well as the cfcatch scope) called
ErrorLogFile, which returns the name and location of the logfile that’s written. Note that while
you cannot include that log file in a CFMAIL from within an error handler (as the write of the file
will not be complete until the end of the error handler request processing), you can offer the path

BlueDragon 7.1 CFML Enhancements Guide 13

and filename of the error log page in a CFMAIL, such as to share with developers for their use in
problem resolution.

4.2.7 CFFLUSH
BlueDragon offers an option in the administration console to control whether the generation of
HTML output on a page is buffered to page completion or not, and it defaults to buffering the
entire page, like ColdFusion. See the BlueDragon 7.1 User Guide for more information on the
topic of page buffering.

If you choose to change the server-wide behavior to buffer less than the entire page (such as to
speed delivery of pages to the client or to reduce memory burden in buffering the entire pages to
completion), there may be a negative impact on your application in the use of some tags in some
situations. To change the behavior on a page-by-page basis to revert to buffering the entire page,
BlueDragon offers a new PAGE attribute for the INTERVAL attribute of CFFLUSH, as in:

 <CFFLUSH INTERVAL=”page”>

BlueDragon also supports use of the CFFLUSH INTERVAL="n" attribute, which enables page-level
control of the flushing of the buffer after a given amount of generated content. This would be
used when the default server-wide setting is set to buffer the entire page but you want to enable
buffering on the current page. Note that the maximum value BlueDragon allows for "n" is 128K
(128*1024): if you set a larger size then BlueDragon buffers the entire page.

4.2.8 CFFUNCTION
BlueDragon 7.0 introduced support for CFC interfaces and abstract CFCs via enhancements to
the CFCOMPONENT and CFFUNCTION tags. The What’s New in BlueDragon 7.1 document contains
an introduction to CFC interfaces and abstract CFCs, including several code examples.

The new TYPE attribute has been added to the CFFUNCTION tag. The TYPE attribute can be either
FUNCTION or ABSTRACT (and the value STATIC is reserved for future use). The TYPE attribute is
optional and defaults to FUNCTION. For backwards-compatibility, if the TYPE attribute is set to
anything other than one of these three values, the type defaults to FUNCTION.

If TYPE="FUNCTION" is specified, the CFFUNCTION tag behaves exactly as it does in previous ver-
sions of BlueDragon. These are referred to as “concrete” functions to distinguish them from ab-
stract functions.

If TYPE="ABSTRACT" is specified (creating an “abstract” function), the CFFUNCTION tag body
may not contain any tags other than CFARGUMENT. Abstract functions may only be specified
within CFCs, and not as user-defined functions within CFML pages. CFCs that contain one or
more abstract functions must be declared TYPE="ABSTRACT" or TYPE="INTERFACE" (see discus-
sion of the CFCOMPONENT tag enhancements).

4.2.9 CFINCLUDE
BlueDragon allows you to include in your CFML pages the output of Java servlets or JavaServer
Pages (JSP), or ASP.NET pages in the .NET edition, via the new PAGE attribute of the

BlueDragon 7.1 CFML Enhancements Guide 14

CFINCLUDE tag. The page attribute specifies the URI for the page to include. It cannot be an ab-
solute file path but instead must be a web server-based path.

Paths that start with “/” start at the document root directory of the web application or web server;
paths that don’t start with “/” are relative to the current CFML document

 <CFINCLUDE PAGE=”/menu.jsp”>

 <CFINCLUDE PAGE=”footer.aspx”>

This is essentially a simplification of the GetPagecontext().include() function, introduced in
CFMX and supported also in BlueDragon.

As when using CFFORWARD (see section 4.3.6), note that variables set in the included page’s
REQUEST scope will be available on the calling page. To access data from the included page’s
other scopes (like FORM or URL), simply copy them to the Request scope before performing the
CFINCLUDE.

When including plain HTML pages, it’s best to simply use the more traditional CFNCLUDE
TEMPLATE approach.

In the Java EE edition, CFINCLUDE can also refer to the WEB-INF directory in a web app, for ex-
ample:

 <CFINCLUDE TEMPLATE="/WEB-INF/includes/header.cfm">

 <CFMODULE TEMPLATE="/WEB-INF/modules/navbar.cfm">

The advantage of using WEB-INF is that files within it are never served directly by the Java EE
server, so a user cannot enter a URL to access them directly.

The CFINCLUDE PAGE attribute can be used to include CFML pages, in which case the included
page’s Application.cfm (and any OnRequestEnd.cfm) will be processed, unlike a typical
CFINCLUDE TEMPLATE. This behavior is the same as using GetPagecontext().include()
function.

4.2.10 CFINDEX

4.2.10.1 Spidering a Web Site
BlueDragon now adds the ability to index/spider the web pages of a web site. CFINDEX has tradi-
tionally been used to index the content of files within a file system. If you indexed a directory of
CFML files, you were indexing the source code, not the result of running the pages. Spidering a
site actually executes the pages in the site and indexes the results.

Spidering is supported by way of a new value for the TYPE attribute: website. The KEY attribute
is used to specify the URL of the site to be spidered, and it must contain the full URL of the web
site to index, including http:// or https://. (Spidering is also supported by way of the Blue-
Dragon admin console page for creating collections.)

https://�

BlueDragon 7.1 CFML Enhancements Guide 15

When spidering a web site, the URL provided in the KEY attribute indicates the starting page,
which doesn't necessarily have to be the home page of the web site. For example, you could
create separate search collections for sub-sections of a web site. The KEY value must specify a
page; if you want to specify the default document for a directory, the URL must end with a "/".
For example, the following are valid KEY values:

 <CFINDEX TYPE="website" KEY="http://www.newatlanta.com/index.html">

 <CFINDEX TYPE="website"
 KEY="http://www.newatlanta.com/bluedragon/index.cfm">

 <CFINDEX TYPE="website" KEY="http://www.newatlanta.com/">

 <CFINDEX TYPE="website" KEY="http://www.newatlanta.com/bluedragon/">

 The following is not valid (no trailing "/"):

 <CFINDEX TYPE="website" KEY="http://www.newatlanta.com">

The spidering process simply follows the links found in the starting page, processing any links
that result in text or html files formats (.cfm, .htm, .jsp, .asp, .aspx, .php, etc.).

Note that it can be used to spider your own site or someone else’s. Please use this feature res-
ponsibly when spidering the web sites of others. The spidering engine does not currently honor
the robots.txt file exclusion standard, but this will be added in the future.

4.2.10.2 Asynchronous Index Processing
Index creation (spidering a web site or indexing a file collection or query resultset) can take a
long time, so BlueDragon adds an optional WAIT attribute to CFINDEX, which takes a boolean
value (such as true or false) that defaults to true (or yes).

If WAIT is true, processing of your CFML page will wait until the indexing operation is com-
pleted. If WAIT is set to false, processing continues immediately (as in ColdFusion) and the in-
dexing is done on a background thread (a message is printed to bluedragon.log when the in-
dexing operation is complete).

Be aware that by specifying WAIT=”false”, it would be inappropriate to try in the same request
to perform a CFSEARCH of the same collection. Setting WAIT to false is appropriate only on
pages that kick off the indexing of, rather than search against, a collection.

The WAIT attribute only applies when the value of ACTION is Update, Refresh, or Purge. It is
ignored for other ACTION values.

The WAIT attribute is also available for CFCOLLECTION ACTION = "Create", with the same se-
mantics described above.

BlueDragon 7.1 CFML Enhancements Guide 16

4.2.11 CFINVOKE
The .NET edition of BlueDragon supports a TIMEOUT attribute when using CFINVOKE against a
web service. The attribute specifies the maximum number of seconds to wait, before the invoca-
tion will fail with a runtime error.

4.2.12 CFLOCATION
BlueDragon 7.0 added the new ABORT attribute to the CFLOCATION tag; this optional attribute ac-
cepts a boolean value and the default is YES/TRUE. If set to YES/TRUE, then request processing is
aborted immediately after the CFLOCATION tag is rendered, exactly as if a CFABORT tag was ex-
ecuted.

If set to NO/FALSE, request processing is not aborted immediately after the CFLOCATION tag is
rendered, but is allowed to continue, including rendering of the OnRequestEnd.cfm file or
onRequestEnd() event handler of the Application.cfc file.

4.2.13 CFMAIL
BlueDragon has added two new attributes to the CFMAIL tag to allow you to store sent mail in an
IMAP server folder. In order to use these attributes you must first open a connection to the IMAP
server using the CFIMAP tag (see below). These two new attributes are used in conjunction with
the existing CFMAIL attributes to send an email message and have it saved on an IMAP server:

<CFMAIL IMAPCONNECTION="name"
 IMAPFOLDER="fullfoldername"
 ...>

4.2.14 CFMAILPARAM
BlueDragon has added two attributes to the CFMAILPARAM tag to support mail file attachments:

 disposition="disposition-type"

 contentID="content ID"

The DISPOSITION attribute specifies how the file content is to be handled. Its value can be
INLINE or ATTACHMENT. The CONTENTID attribute specifies the mail content-ID header value and
is used as an identifier for the attached file in an IMG or other tag in the mail body that refer-
ences the file content. This ID should be globally unique.

4.2.15 CFOBJECT
In BlueDragon for the Microsoft .NET Framework, a new TYPE value of .NET is supported for
calling .NET objects. See Integrating CFML with ASP.NET and the Microsoft .NET Framework
for more information.

4.2.16 CFOBJECTCACHE
CF5 introduced a new tag, CFObjectCache, with an available Action=”clear” attribute/value
pair used to clear all cached queries for all pages and applications. BlueDragon supports this tag
with an additional new attribute, CacheDomain, which allows you to name a server whose cache

BlueDragon 7.1 CFML Enhancements Guide 17

you wish to flush. If you don't specify it, it will default to the one which the request is
processing.

4.2.17 CFPROCPARAM
BlueDragon 7.0 added support for the following values for the CFSQLTYPE attribute for use with
Microsoft SQL Server:

 CF_SQL_BINARY
 CF_SQL_VARBINARY

BlueDragon 7.0 added support for the following value for the CFSQLTYPE attribute for use with
Oracle databases:

 CF_SQL_NCLOB

BlueDragon 7.0 added support for the following values for the CFSQLTYPE attribute for use with
Oracle 8 databases:

 CF_SQL_NCHAR
 CF_SQL_NVARCHAR

4.2.18 CFQUERY
BlueDragon offers various enhancements regarding CFQUERY, with respect to query resultsets,
query processing, and query caching.

4.2.18.1 CACHEDUNTILCHANGE Attribute
BlueDragon 7.0 introduced the CACHEDUNTILCHANGE attribute as a superior alternative to the
CACHEDWITHIN attribute when using BlueDragon.NET in conjunction with Microsoft SQL Server
2005.

Using the CACHEDWITHIN attribute for CFQUERY caching suffers from one major drawback: what’s
the right interval? If you choose an interval that’s too short, then you’re not getting the full bene-
fits of caching because you’re retrieving data more often than you should. But if you choose an
interval that’s too long, then you’re sometimes using “stale” data. Unfortunately, there’s often no
good answer.

BlueDragon for the Microsoft .NET Framework (BlueDragon.NET), when used in conjunction
with Microsoft SQL Server 2005 offers a better alternative to CACHEDWITHIN for query caching.
The new CACHEDUNTILCHANGE attribute allows you to do “perfect” query caching. That is, Blue-
Dragon caches the query results until notified by the database server that the data has changed.
Thus you’re always using the latest data, and data is retrieved from the database only when
needed.

Simply set the CACHEDUNTILCHANGE attribute to “true” or “yes” on the CFQUERY tag:

 <cfquery datasource="myCompany" name="engineers"
 cacheduntilchange="true">
 SELECT EmpID, FirstName, LastName, Department

BlueDragon 7.1 CFML Enhancements Guide 18

 FROM Employees
 WHERE Department = "Engineering">
 </cfquery>

4.2.18.2 BACKGROUND Attribute
BlueDragon 7.0 introduced the new BACKGROUND attribute for CFQUERY to allow you to perform
database inserts or updates on a background thread. Processing of main request continues while
the insert or update is processed on a separate thread. This is similar in concept to CFTHREAD, ex-
cept that using the BACKGROUND attribute does not create a new thread for each tag execution. In-
stead, a single background thread is dedicated to all background operations, which are queued for
execution by the CFQUERY tag when the BACKGROUND attribute is specified.

For example, consider a simple custom logger that you might implement in the onRequestEnd()
event handler of your Appliction.cfc (see the example, below). The onRequestEnd() method
gets invoked at the end of every request, but there’s no need to delay sending the response to the
user while the database insert is executed. Instead, set the BACKGROUND attribute to “true” or
“yes” to have the insert done on a background thread.

Any database insert or update that does not affect page rendering is a candidate for using the
BACKGROUND attribute.

 <cffunction name="onRequestEnd" returnType="void" output="false">
 <cfargument name="targetPage" type="string" required="true">

 <!--- queue log insertion for background processing --->
 <cfquery datasource="myLogs" background="true">
 INSERT INTO RequestLog (
 RequestTime,
 RequestPage,
 REMOTE_ADDR,
 HTTP_USER_AGENT
) VALUES (<cfqueryparam value="#Now()#">,
 <cfqueryparam value="#arguments.targetPage#">,
 <cfqueryparam value="#cgi.REMOTE_ADDR#">,
 <cfqueryparam value="#cgi.HTTP_USER_AGENT#">
)
 </cfquery>
 </cffunction>

4.2.18.3 DSN-less Connections Supported in .NET Edition
Although CFMX removed support for DSN-less connections (which was added in CF 5), the
.NET edition of BlueDragon does support this feature (through the dbType=”dynamic” and
connectString attributes). With it, you can use a database in CFQUERY, CFINSERT, CFUPDATE,
and CFSTOREDPROC without having to define a datasource in the BlueDragon Admin console.

An example of this feature follows, which queries an access database in a given absolute path to
a directory:

BlueDragon 7.1 CFML Enhancements Guide 19

<CFQUERY NAME="getemp" dbtype="dynamic"
ConnectString="DRIVER=Microsoft Access Driver (*.mdb);
DBQ=absolutpath\cfsnippets.mdb">
 SELECT *
 FROM Employees
</CFQUERY>

<cfdump var="#getemp#">

The following demonstrates using the text driver to be able to read a CSV file using CFQUERY,
which turns it into a query result set. You name the directory in the dbq argument, then name the
file in the SELECT … FROM clause:

<CFQUERY NAME="get" dbtype="dynamic"
connectstring="Driver={Microsoft Text Driver
(*.txt;*.csv)};Dbq=absolutepathtodirectory">
SELECT *
FROM test.csv
</CFQUERY>
<cfdump var="#get#">

For more information on using DSN-less connections in CFML, see the following:

http://livedocs.macromedia.com/coldfusion/5.0/Developing_ColdFusion_Applic
ations/queryDB5.htm#1108627

http://www.atlantisnet.com/kb/archives/000011.html

For information on valid connection string values for various databases, see the following re-
source (though it shows ASP-oriented syntax, the information is useful):

http://www.carlprothman.net/Default.aspx?tabid=90

Again, the Java EE editions of BlueDragon do not support DSN-less connections.

4.2.18.4 Query Caching Enhancements
BlueDragon offers improved caching for CFQUERY tags which provides greater control over
flushing cached queries. In ColdFusion, the only way to flush the query cache is with
CFOBJECTCACHE. While BlueDragon supports that, it also adds new cacheName and action
attributes to CFQUERY.

The optional cacheName attribute can be used to assign a unique name for cached CFQUERY re-
sults, to facilitate later flushing of that specific cache:

<CFQUERY NAME=”users” DATASOURCE=”mycompany” CACHENAME=”usercache”>
SELECT * FROM USERS
</CFQUERY>

Of course, the cachedWithin and cachedAfter attributes as implemented by ColdFusion can be
used in conjunction with CACHENAME to add time-based caching.

http://livedocs.macromedia.com/coldfusion/5.0/Developing_ColdFusion_Applications/queryDB5.htm#1108627�
http://livedocs.macromedia.com/coldfusion/5.0/Developing_ColdFusion_Applications/queryDB5.htm#1108627�

BlueDragon 7.1 CFML Enhancements Guide 20

In the above example, the CFQUERY results will be cached under the name “usercache” and
when this query is run again the results from the cache will be used. You must specify a unique
value for CACHENAME; if the same value for CACHENAME is specified for multiple CFQUERY tags,
whether on the same or different CFML pages, the results in the cache will be overwritten.

A CFQUERY cache can be flushed using the new optional action attribute:

<CFQUERY ACTION=”flushcache” CACHENAME=”usercache”>

All CFQUERY cached results can be cleared using a single tag:

<CFQUERY ACTION=”flushall”>

A CFQUERY tag that uses the action attribute to flush a cache can appear on the same or a differ-
ent CFML page from the CFQUERY tag that defines the cache. BlueDragon also supports the
CFObjectCache tag introduced in CF5, used to clear all cached queries, and it adds a new
attribute (CacheDomain) for controlling cache clearing on multiple servers. See the discussion of
CFObjectCache in 4.2.16 for more information.

4.2.18.5 Query ExecutionTime Variable
While BlueDragon supports the cfquery.executiontime variable, which was added to Cold-
Fusion MX, it also provides an executiontime variable for each query’s resultset (so a query
named GetEmp would have an available GetEmp.executiontime variable.)

4.2.18.6 PRESERVESINGLEQUOTES Attribute
BlueDragon, like ColdFusion, automatically “escapes” single-quote characters within CFML va-
riables used to create SQL statements within CFQUERY tags. For example, the following SQL will
work correctly because the single quote within the string, “O’Neil”, will be escaped before being
passed to the database:

<CFSET EmployeeName=”O’Neil”>

<CFQUERY NAME=”employees” DATASOURCE=”MyCompany”>
SELECT * FROM Employees
WHERE LastName = ‘#EmployeeName#’
</CFQUERY>

If you have code where this behavior is undesirable, you can change it with the available
PreserveSingleQuotes() function, which when used against a variable within a CFQUERY will
stop the automatic escaping of quotes. For example, consider an instance when a variable used in
SQL (such as an incoming form field or other variable) may have a list of values presented as a
single-quote delimited list. Escaping single-quotes in this case will produce incorrect results:

<CFSET NameList=" 'Peterson','Smith' ">

<CFQUERY NAME="employees" DATASOURCE="cfsnippets" >
SELECT * FROM Employees
WHERE LastName IN (#PreserveSingleQuotes(NameList)#)
</CFQUERY>

BlueDragon 7.1 CFML Enhancements Guide 21

As an enhancement, if you would like all variables within a query to automatically preserve any
single quotes, BlueDragon 6.2 added a new PreserveSingleQuotes attribute that can be speci-
fied on the CFQUERY. The new attribute simply applies a global change of behavior in SQL
processing than might otherwise be achieved with one or more uses of the
PreserveSingleQuotes() function; for example:

<CFSET NameList=" 'Peterson','Smith' ">

<CFQUERY NAME="employees" DATASOURCE="cfsnippets"
 PRESERVESINGLEQUOTES=”Yes”>
SELECT * FROM Employees
WHERE LastName IN (#NameList#)
</CFQUERY>

4.2.19 CFQUERYPARAM
BlueDragon supports use of CFQUERYPARAM within cached queries (using CFQUERY’s
CACHEDWITHIN attribute, for instance). ColdFusion does not. The benefit here is that cached que-
ries can benefit from the enhanced security and performance features enabled by CFQUERYPARAM.

BlueDragon 7.0 added support for the following values for the CFSQLTYPE attribute for use with
Microsoft SQL Server:

 CF_SQL_BINARY
 CF_SQL_VARBINARY

BlueDragon 7.0 added support for the following value for the CFSQLTYPE attribute for use with
Oracle databases:

 CF_SQL_NCLOB

BlueDragon 7.0 added support for the following values for the CFSQLTYPE attribute for use with
Oracle 8 databases:

 CF_SQL_NCHAR
 CF_SQL_NVARCHAR

4.2.20 CFSEARCH
BlueDragon added predefined RecordCount and ColumnList columns to the results of a
CFSEARCH, with values identical to those returned in traditional query result sets.

On the other hand, a new variable has been added, SearchCount, which reflects the total number
of items in the search result, irrespective of any MaxRows value that may have been specified in
the CFSEARCH. This makes it possible to better manage the resultset, such as when providing a
paging interface.

CFSEARCH also supports an additional attribute, MinScore, which accepts a number between 0
and 1.0 and will return only those results with a score greater than this. By default, all query re-
sults are returned regardless of score.

BlueDragon 7.1 CFML Enhancements Guide 22

Finally, BlueDragon adds SORT, SORTDIRECTION and SORTTYPE attributes to support sorting of
search results.

4.2.21 CFSET (Multi-dimensional arrays)
ColdFusion limits multi-dimensional arrays to three dimensions; BlueDragon does not impose
any limit. For example the following tags are supported by BlueDragon, but will generate errors
in ColdFusion:

<CFSET myArray=ArrayNew(8)>
<CFSET myArray[2][3][4][4][2][3][4][4]="BlueDragon">

4.2.22 CFXML
BlueDragon offers additional functionality with respect to case sensitivity, node processing, and
array handling. See section 5.7 for more information.

4.3 New CFML Tags
This section lists new CFML tags that are unique to BlueDragon.

4.3.1 CFASSERT
CFASSERT is a new CFML tag introduced by BlueDragon that can be used as a testing tool to en-
hance the reliability and robustness of your applications. The concept of using assertions is fre-
quently found in more advanced languages, and it’s critical to effective unit-testing of your ap-
plications. Complete discussion of the benefits and uses of assertions is beyond the scope of this
manual, but a brief explanation follows.

CFASSERT (and its corresponding assert() function discussed in section 4.5.1) takes an expres-
sion that is expected to evaluate to a Boolean result (true or false). CFASSERT has no attribute,
rather it simply provides the expression to test within the tag, as in <CFASSERT

someexpression>. An example is <CFASSERT testvar is expectedval>.

An assertion tests throw an exception if the result is false but does nothing if the result is true.
They are also ignored if assertions have not been enabled in the BlueDragon Administration con-
sole, as discussed at the end of this section. The intention is that you can place these assertions in
your code to help ensure that some expected state of the application is indeed occurring as ex-
pected. More accurately, they cause failure if the state is not as expected.

4.3.1.1 Understanding Assertions
A typical use is during testing, when you expect that a given variable will have a given value (or
perhaps a range of values), perhaps after calling a custom tag, UDF, or CFC method. Another
example is when you want to test the mere existence of a given variable (such as an expected
session or application variable).

The difference between assertions and using a CFIF is that the CFIF is intended to control the
flow of the logic, executing code depending on a condition that may or may not be true. An as-
sertion test is intended to simply throw an error if the expected condition is not (and never should

BlueDragon 7.1 CFML Enhancements Guide 23

be) true. In other words, the CFIF test handles expected conditions, while the assertion flags un-
expected conditions.

An assertion could be surrounded by a CFTRY to catch and handle the error that will be thrown, or
the error can be allowed to pass up to the caller of the code throwing the exception. It could also
be left to be handled by any CFERROR or site-wide error handler, or if unhandled will simply re-
sult in a BlueDragon runtime error.

4.3.1.2 Controlled By Admin Console Setting
Execution of CFASSERT (and the assert() function) is controlled by the Enable Assertions
setting on the Debug Settings page of the BlueDragon Administration console. After changing
this setting, you must restart the server for it to take effect.

If the “Enable Assertions” option is checked, then CFASSERT tags and assert() functions are
enabled, otherwise they are not and are simply ignored when encountered. This means that as-
sertions can be left in code placed into production, where the Admin setting would be set to disa-
ble assertions. There is no cost to assertions existing in code when they are disabled. Assertions
are supported in all editions of BlueDragon.

4.3.2 CFBASE
CFBASE is a CFML tag introduced by BlueDragon that is primarily intended for use in Blue-
Dragon for Java EE Servers. The CFBASE tag can be used to create an absolute URL that serves
as the base for resolving relative URLs within a CFML page (such as in IMG tags). The absolute
URL created by the CFBASE tag includes the Java EE web application context path. See the doc-
ument Deploying CFML on Application Java EE Application Servers for a detailed discussion of
CFBASE.

4.3.3 CFCACHECONTENT
CFCACHECONTENT is a new tag introduced by BlueDragon to cache blocks of html for a given
time without having to regenerate it every time. While it may seem a melding of CFSAVECONTENT
and CFCACHE, this tag is more powerful as it can cache not only in memory but to a database ta-
ble as well.

Additionally, flushing of the cache is enhanced as well, with two available attributes: CACHENAME
and GROUP. GROUP allows you to gather together cached elements and treat them as a single logi-
cal unit. For example, you may wish to cache various elements for a given user, but should that
user change something, you can flush and clear all their cached elements in a single operation.

<CFCACHECONTENT
 ACTION = "action"
 CACHENAME = "name of cache"
 GROUP = "group name">
 CACHEDWITHIN = "timeout for cache"
…some content
</CFCACHECONTENT>

The following table lists the CFCACHECONTENT tag attributes.

BlueDragon 7.1 CFML Enhancements Guide 24

Attribute Description
Action Required. Operation to perform; possible operations are CACHE, FLUSH, FLUSHGROUP,

FLUSHALL, and STATS:
CACHE – Default value. Caches the data within the tag
FLUSH - Flushes cached items designated using the given CACHENAME. All items cached
with this CACHENAME are removed
FLUSHGROUP - Flushes cached items designated using the given GROUP. All items
cached with this GROUP are removed
FLUSHALL - Flushes the entire cache, including all data in the database cache
STATS - This will return a structure, CFCACHECONTENT, with two fields, MISSES and
HITS, which detail the number of times requests have found data using the cache and the
number of times requests called for a cached result to be generated. This gives you an indi-
cation of how efficient your cache is performing
RESET - resets the HIT and MISS counts to zero, for all GROUP/CACHENAMEs or individ-
ual ones.

CacheName Required for ACTION=CACHE. The name to be given for the item being cached, which
should be unique across all GROUPs.

Group Optional. A name given to group cached results together. It defaults to the name of the
server, as determined in cgi.server_name.

CachedWithin Optional. Used with ACTION=CACHE. The maximum time to maintain this cached result. If
the cached data is found to be older than this when a request attempts to use the cached
result, the cached content will be regenerated. Specified using #CreateTimeSpan()#.

This tag requires an end tag.

4.3.3.1 Database Persistence of Cached Data
You can cause cached data to be persisted to a database, to support caching data across server
restarts, by declaring a datasource in the bluedragon.xml file using:

<server>
 <cfcachecontent>
 <datasource>datasourcename</datasource>
 <total>5</total>
 </cfcachecontent>
</server>

The TOTAL value specifies the number of cached items that will be persisted to memory before
being paged out to the database. A Least Recently Used algorithm is used for paging out data.
When a flush occurs, the items in the database are also removed. A table, LRUCACHE, will be au-
tomatically created in the database if one is not already present. Data persisted in the database
will be maintained over server-restarts. The table has a DATETIME field associated with cached
items which can be used to manually process cached items.

The following example illustrates caching content. This will cache data for 4 minutes

<CFCACHECONTENT CACHENAME="abc"
 CACHEDWITHIN="#CreateTimeSpan(0,0,4,0)#">
 <CFOUTPUT>#now#</CFOUTPUT>
</CFCACHECONTENT>

BlueDragon 7.1 CFML Enhancements Guide 25

If this code was processed on multiple servers but cached to the same database, the cached re-
sults would be unique to each server (because the GROUP attribute was allowed to default to the
current servername).

To flush this cache manually we would call:

<CFCACHECONTENT ACTION="flush" CACHENAME="abc"/>

Or to flush all cached data for the current server, regardless of cachename, use:

 <CFCACHECONTENT ACTION="flushgroup"/>

To flush all cached data for all servers (groups), regardless of cachename, use:

 <CFCACHECONTENT ACTION="flushall"/>

4.3.4 CFCONTINUE
The new CFCONTINUE tag works similarly to CFBREAK in that it can only be used within the body
of a CFLOOP tag (it cannot be used in a CFOUTPUT QUERY loop.) CFBREAK terminates execution of
the current iteration of the CFLOOP body and continues execution after the closing CFLOOP tag.
CFCONTINUE, on the other hand, terminates execution of the current iteration of the CFLOOP body
and continues execution of the next iteration of the CFLOOP body from the opening CFLOOP tag.

4.3.5 CFDEBUGGER
CFDEBUGGER is a CFML tag introduced by BlueDragon that adds a powerful new weapon in
CFML debugging. In simple terms, it writes a trace to a log file indicating each CFML line of
code that's been executed.

Consider the following simplified example of its use:

<CFDEBUGGER LOGFILE="#expandpath(‘trace.log’)#">
<CFSET name="bob">

This two-line template will create an entry in a file named trace.log (as indicated in the LOGFILE
attribute, which in this case will store the logfile in the same directory as the page running the
tag). In this case, the log file will include the following info:

#0: CFDEBUGGER trace started @ 19/Aug/2003 15:03.19
#1: active.file=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#2: tag.end=CFDEBUGGER; L/C=(1,1);
File=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#3: tag.start=CFSET; L/C=(2,1);
File=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#4: tag.end=CFSET; L/C=(2,1);
File=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#5: file.end=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#6: Session Ended

Note that it indicates the time the template was run and the template's name. More important, the
trace shows, for each CFML tag it encounters, its start and end lines in the given template. Be-

BlueDragon 7.1 CFML Enhancements Guide 26

ware that the log could accumulate a large amount of information, as it starts logging once its set
for the remainder of the request, and it appends data for all subsequent requests executed, until
the tag is removed.

Note as well that if you don’t specify a path for the file (or use a relative path), the destination
for the logfile will vary depending on the version of BlueDragon you’re using. Using an absolute
path, or expandpath() as above, will be most straight-forward.

For more information on the CFDEBUGGER tag, see the November 2003 ColdFusion Developers
Journal article on the subject:

http://coldfusion.sys-con.com/read/42101.htm

4.3.6 CFFORWARD
CFFORWARD is a tag introduced by BlueDragon that allows you to do a “server-side redirect” to
another CFML page, or in some BlueDragon editions a Java servlet or JavaServer Page (JSP), or
in the .NET edition an ASP.NET page. In a “client-side redirect,” which is done using the
CFLOCATION tag, a response is sent to the browser telling it to send in a new request for a speci-
fied URL. In contrast, CFFORWARD processing is handled completely on the server.

The advantages of CFFORWARD over CFLOCATION are:

• There is no need for extra messaging between the server and browser

• Variables in the REQUEST scopes are available to the target of the CFFORWARD tag

To pass data from other scopes (like FORM or URL), simply copy them to the Request scope be-
fore calling CFFORWARD.

CFFORWARD has a single attribute, page, which specifies the URI of the target page. Paths that
start with “/” start at the document root directory of the web application or web server; paths that
don’t start with “/” are relative to the current CFML document:

 <CFFORWARD PAGE=”/nextpage.cfm”>

 <CFFORWARD PAGE=”nextpage.jsp”>

 <CFFORWARD PAGE=”nextpage.aspx”>

Like CFLOCATION, processing of the current page is terminated as soon as the CFFORWARD tag is
executed.

4.3.7 CFIMAGE
CFIMAGE is a tag introduced by BlueDragon 7.0 and enhanced in BlueDragon 7.1 that allows you
to modify an existing GIF, JPEG, or PNG image file to produce a new image file that is resized
and/or has a text label added to the image. Variables returned by this tag provide information
about the new image file.

BlueDragon 7.1 CFML Enhancements Guide 27

The following table lists the CFIMAGE tag attributes.

Attribute Description
SrcFile Required. The file name of the source image file that is to be modified. Can be either a full

physical path or a relative path (see the URIDirectory attribute).

DestFile Required if ACTION=EDIT, Optional if ACTION=INFO. The file name of the new image file to
be created by the CFIMAGE tag. Can be either a full physical path or a relative path (see the
URIDirectory attribute).

Action Optional. The action to be taken by the CFIMAGE tag. Values are:
• INFO populates the CFIMAGE variables with information about the image file specified by

the srcFile attribute without modifying the image.

• EDIT creates a new image file by resizing and/or adding a text label to the source image
file. Can also be used to modify the CONTRAST and BRIGHTNESS of the image.

• CROP modifies the image by cropping based on X an Y starting attributes, and WIDTH
and HEIGHT attributes.

• ROTATE modifies the image by rotating it based on the ANGLE attribute.
• BORDER modifies the image by adding a border based on the THICKNESS and COLOR

attributes.
• GRAYSCALE modifies the image by applying a grayscale filter.
The default value is EDIT.

Angle Optional; used with the ROTATE action. Specified in position or negative degrees.

Contrast Optional; used with the EDIT action, adjusts the contrast of the image. The value is a floating
point number. A value of 0 will result in an entirely black image; a value of 1 will leave the
image unchanged.

Brightness Optional; used with the EDIT action, adjusts the brightness of the image. The value is an
integer. A value of -255 will result in an entirely black image; a value of 255 will result in an
entirely white image; a value of 0 will leave the image unchanged.

Type Optional. The image file type, either GIF, JPEG, or PNG. If this attribute is not specified, the
CFIMAGE tag attempts to determine the image type based on the file name extension.

Width Optional. The width of the new image; can be specified either in pixels or as a percentage of
the source image width. If specified in pixels, the Height attribute must also be specified in
pixels. Defaults to “100%”.

Height Optional. The height of the new image; can be specified either in pixels or as a percentage of
the source image height. If specified in pixels, the Width attribute must also be specified in
pixels. Defaults to “100%”.

FontSize Optional. An integer value that specified the font size of the text label to be added to the im-
age. Defaults to 12.

FontColor Optional. Specifies the font color of the text label to be added to the image. Accepts any
value that is valid for use in the FONT tag. Defaults to “black”.

Text Optional. The text label to add to the image.

Position Optional. The position of the text label to add to the image; valid valued are “north” and
“south”. Defaults to “south”.

Thickness Optional; used with the BORDER action. Value is in pixels.

Color Optional; used with the BORDER action. Value is an HTML color value.

NameConflict Optional. Indicates the behavior of the CFIMAGE tag when the file specified by destFile
already exists. Valid values are ERROR, which generates a runtime error; SKIP, which
causes the CFIMAGE tag to do nothing without generating an error; OVERWRITE, to over-
write the existing image; and, MAKEUNIQUE, which causes CFIMAGE to create a new
unique file name for the new image file. Defaults to ERROR.

URIDirectory Optional. Set to YES/TRUE to specify relative paths from the web server document root
directory in the SRCFILE and DESTFILE attributes. Set to NO/FALSE to specify full physical
paths in the SRCFILE and DESTFILE attributes. Defaults to NO/FALSE.

BlueDragon 7.1 CFML Enhancements Guide 28

The following table lists the variables returned by the CFIMAGE tag.

Variable Description
CFIMAGE.SUCCESS Contains the value TRUE or FALSE to indicate whether image processing was success-

ful.

CFIMAGE.ERRORTEXT If processing was unsuccessful, contains a text message describing the error.

CFIMAGE.WIDTH For ACTION=EDIT, the width in pixels of the new image. For Action=INFO, the width in
pixels of the image.

CFIMAGE.HEIGHT For ACTION=EDIT, the height in pixels of the new image. For Action=INFO, the height in
pixels of the image.

CFIMAGE.PATH The full physical path to the image.

CFIMAGE.NAME The name of the new image file.

CFIMAGE.FILESIZE The size in bytes of the new image file.

The following example displays two images – the original image “picture.gif”, and the processed
image “newPicture.gif”.

<cfimage action="edit"
 srcfile="picture.gif"
 destfile="newPicture.gif"
 uridirectory="yes"
 text="Copyright 2003"
 width="50%"
 height="50%"
 fontsize=20
 fontcolour="violet"
 position="SOUTH"
 nameconflict="overwrite">

The following example displays information about an existing image file named “picture.jpg”.

<cfimage action="info" srcfile="picture.jpg">

<cfoutput>
Success : #cfimage.success#

Dimensions : #cfimage.width# x #cfimage.height#

Path : #cfimage.filepath#

Name : #cfimage.filename#

Size (bytes) : #cfimage.filesize#

Error message : #cfimage.errortext#

</cfoutput>

While CFIMAGE can read a PNG file (with TYPE=”GIF”), it cannot write PNG files through any
means.

BlueDragon 7.1 CFML Enhancements Guide 29

4.3.8 CFIMAP
The CFIMAP tag allows you to interact with both IMAP and POP mail servers (CFIMAP may be
used instead of CFPOP to interact with POP mail servers). Generally, the sequence of steps to in-
teract with a mail server is:

1. Open a connection to the mail server (OPEN action).

2. Get a list of folders from the mail server (LISTALLFOLDERS action).

3. Get a list of messages within a specific folder (LISTMAIL action).

4. Perform actions with specific messages (READMAIL, MARKREAD, DELTEMAIL, and
MOVEMAIL actions).

5. Perform actions with folders (DELETEFOLDER and RENAMEFOLDER actions).

6. Close the connection (CLOSE action).

Each of these steps is described below.

4.3.8.1 Opening a Connection
Before performing actions such as reading mail, you must first open a connection with the IMAP
or POP server. Specify a value of OPEN for the action attribute. The name specified for the con-
nection attribute will be used to refer to this connection when performing subsequent actions
with the IMAP or POP server, such as reading mail.

<CFIMAP ACTION="OPEN"
 SERVICE="POP3 or IMAP"

 CONNECTION="name"
 SERVER="mail.yourdomain.com"
 USERNAME="username"
 PASSWORD="password">

Two variables are always returned by the CFIMAP tag:

IMAP.SUCCEEDED – “true” or “false” depending on whether the previous action succeeded

IMAP.ERRORTEXT – an error message, if the previous action failed

Please note that the Connection attribute is intended to be used to create a name to uniquely
distinguish this connection from any other. The value does not become a variable that can be ac-
cessed in any way. Further, to distinguish CFIMAP calls from each other, you can use a variable
for the name, such as #session.sessionid#.

4.3.8.2 Closing a Connection
An IMAP or POP server connection can be closed by specifying ACTION=”CLOSE” and the name
of the connection:

<CFIMAP ACTION="CLOSE"
 CONNECTION="name">

BlueDragon 7.1 CFML Enhancements Guide 30

After closing a connection, any attempts to use the connection will generate an error.

4.3.8.3 Listing Mailbox SubFolders
Use ACTION=”LISTFOLDER” to get a list of subfolders under a given folder, or all the top level
folders on the IMAP or POP server:

<CFIMAP ACTION="LISTFOLDER"
 CONNECTION="name"
 FOLDER=”fullname/”

NAME="queryname">

If a FOLDER name is used, note that it must be a fullname. See the discussion of fields returned in
the query structure, later in this section. Additionally, note that you may need to use a closing
slash at the end of the folder name, depending on the mail server.

Note that the FOLDER attribute is optional; if not used, the tag will return all the folders (but not
subfolders) at the root level. See Action=”ListAllFolders” in the next section to list all fold-
ers and subfolders.

The folder list is returned in a Query structure with the name you specified in the NAME attribute.
The fields of the Query structure are:

FULLNAME – the full path to the folder (used to retrieve folder message info)

NAME – shortcut name to the folder

TOTALMESSAGES – total messages this folder is holding

UNREAD – total unread messages in this folder

NEW – total new messages in this folder

The FULLNAME field is used for making subsequent calls to folders with other CFIMAP action pa-
rameters.

4.3.8.4 Listing All Mailbox Folders
Use ACTION=”LISTALLFOLDERS” to get a list of folders on the IMAP or POP server:

<CFIMAP ACTION="LISTALLFOLDERS"
 CONNECTION="name"

NAME="queryname">

See the discussion in the previous section about the query structure returned in the variable spe-
cified in the NAME attribute.

4.3.8.5 Listing Mail Messages
You can retrieve high-level information about the messages within a folder by specifying
ACTION=”LISTMAIL”; this action does not retrieve the message bodies. To read a message body
you must first get an email message ID using the LISTMAIL action and then specify the message
ID in the READMAIL action as described in the next section.

BlueDragon 7.1 CFML Enhancements Guide 31

The folder attribute must contain the name of a folder as contained in the FULLNAME field of the
Query structure returned by ACTION=”LISTALLFOLDERS”.

<CFIMAP ACTION="LISTMAIL"
 CONNECTION="name"
 FOLDER="fullname"
 NAME="queryname">

The message information is returned in a Query structure with the name you specified in the
name attribute. The fields of this Query structure are:

SUBJECT – subject line of the mail message

ID – unique ID of this mail message (used to retrieve the message body)

RXDDATE – the date this mail message was received

SENTDATE – the date this mail message was sent

FROM – address structure (see below)

TO – array of address structures (see below)

CC – array of address structures (see below)

BCC – array of address structures (see below)

SIZE – size in bytes of this mail message

LINES – number of lines of this mail message

ANSWERED – boolean flag if this mail message has been answered

DELETED – boolean flag if this mail message has been deleted

DRAFT – boolean flag if this mail message is an unsent draft

FLAGGED – boolean flag if this email has been flagged

RECENT – boolean flag if this email is recent

SEEN – boolean flag if this email has been seen (read)

Internet email addresses are stored as structures with two fields:

NAME – name of the person

EMAIL – email address of the person

The TO, CC, and BCC fields contain arrays of these structures.

4.3.8.6 Reading a Mail Message
You can read a specific email message by specifying ACTION=”READMAIL”, the folder name, and
the email message ID as returned by the LISTMAIL action:

<CFIMAP ACTION="READMAIL"

BlueDragon 7.1 CFML Enhancements Guide 32

 CONNECTION="name"
 FOLDER="foldername"
 MESSAGEID="messageid"
 ATTACHMENTSURI="uritofolder"
 NAME="messagename">

This action will retrieve the given message and fill in a structure variable containing information
regarding the retrieved email message. In addition to this, should the message have any attach-
ments, you specify the URI of the folder you wish the email attachment to be stored in. Note this
is a URI and not a real directory. The fields of the returned structure are:

SUBJECT – subject of the email

ID – unique ID to this mail

RXDDATE – the date this mail was received

SENTDATE – the date this email was sent

FROM – address structure (see below)

TO – array of Address Structures (see below)

CC – array of Address Structures (see below)

BCC – array of Address Structures (see below)

SIZE – size in bytes of this email

LINES – number of lines of this email

ANSWERED – boolean flag if this email has been answered

DELETED – boolean flag if this email has been deleted

DRAFT – boolean flag if this email is a draft

FLAGGED – boolean flag if this email has been flagged

RECENT – boolean flag if this email is recent

SEEN – boolean flag if this email has been seen

BODY – array of Body structures (see below)

The body of the email is treated with some consideration. Due to the various properties a MIME
type email message can have, each element in the array is effectively the MIME part that was
transmitted with the email.

MIMETYPE – the MIME type of this part

CONTENT – the content of this email if not an attachment

FILE – boolean flag to indicate if there is a file attached

FILENAME – the name of the attached file

URL – the URI to the saved file

BlueDragon 7.1 CFML Enhancements Guide 33

SIZE – the size of the saved file

To loop through the message body array elements, you might use the following code:

 <CFOUTPUT>
 <CFLOOP INDEX="X" FROM="1" TO="#ArrayLen(msg.body)#">

#msg.body[X].mimetype#

#msg.body[X].file#

#msg.body[X].content#
 </CFLOOP>
 </CFOUTPUT>

This action will not overwrite any existing files; instead, it will create a unique name for it.

4.3.8.7 Marking Mail Messages as “Read”
You can mark messages as having been read by specifying ACTION=”MARKREAD”, a folder name,
and a list of message IDs:

<CFIMAP ACTION="MARKREAD"
 CONNECTION="name"
 FOLDER="toplevelfoldername"
 MESSAGELIST="list of IDs">

The message list is either a single message ID or a comma-separated list of IDs.

4.3.8.8 Deleting Mail Messages
You can delete messages by specifying ACTION=”DELETEMAIL”, a folder name, and a list of mes-
sage IDs:

<CFIMAP ACTION="DELETEMAIL"
 CONNECTION="name"
 FOLDER="toplevelfoldername"
 MESSAGELIST="list of IDs">

The message list is either a single message ID or a comma-separated list of IDs.

4.3.8.9 Setting Message Flags
You can set the status of various aspects of a message (such as read, seen, answered), using
ACTION=”SETFLAGS”, along with a folder name, a message ID, and any of the following flag-
name attributes indicated as a Boolean value: ANSWERED, DELETED, DRAFT, FLAGGED, RECENT,
SEEN:

<CFIMAP ACTION="SETFLAGS"
 CONNECTION="name"
 FOLDER="toplevelfoldername"

MESSAGEID="messageid"
flagname=”boolean”>

BlueDragon 7.1 CFML Enhancements Guide 34

4.3.8.10 Moving Mail Messages between Folders
You can move a list of messages from one mail server folder to another by specifying
ACTION=”MOVEMAIL”:

<CFIMAP ACTION="MOVEMAIL"
 CONNECTION="name"
 FOLDER="toplevelfoldername"
 DESTFOLDER="toplevelfoldername"
 MESSAGELIST="list of IDs">

The message list is either a single message ID or a comma-separated list of IDs.

4.3.8.11 Creating a Folder
Specifying ACTION=”CREATEFOLDER” will create a folder on the mail server:

<CFIMAP ACTION="CREATEFOLDER"
 CONNECTION="name"
 FOLDER="fullfoldername">

The folder name is the complete path to the folder.

4.3.8.12 Deleting a Folder
Specifying ACTION=”DELETEFOLDER” will delete a folder from the mail server, including all of
its contents (mail messages):

<CFIMAP ACTION="DELETEFOLDER"
 CONNECTION="name"
 FOLDER="fullfoldername">

The folder name is the complete path to the folder. This is a very powerful action and should be
used with extreme care, as it can remove all messages and folders from the mail server.

4.3.8.13 Renaming a Folder
Specifying ACTION=”RENAMEFOLDER” will rename a folder on the mail server:

<CFIMAP ACTION="RENAMEFOLDER"
 CONNECTION="name"
 OLDFOLDER="fullfoldername"
 NEWFOLDER="fullfoldername">

The folder name is the complete path to the folder.

4.3.8.14 Sending Mail Messages
Sending email messages is done using the CFMAIL tag, not CFIMAP. However, BlueDragon has
added two new attributes to the CFMAIL tag to allow you to store sent mail in an IMAP server
folder. See the section on the CFMAIL tag for details.

4.3.9 CFINTERRUPT
CFINTERRUPT is a new tag introduced by BlueDragon to support multi-threaded programming.
The What’s New in BlueDragon 7.1 document contains an introduction to multi-threaded pro-

BlueDragon 7.1 CFML Enhancements Guide 35

gramming using CFTHREAD, CFINTERRUPT, and other related tags and functions, including sev-
eral examples.

CFINTERRUPT is used to interrupt, or “wake up” a thread that is paused within a CFPAUSE tag.
CFINTERRUPT has a single required attribute, THREAD, which specifies the name of the thread to
be interrupted. The THREAD name must have been specified as the NAME attribute of a CFTHREAD
tag

4.3.10 CFJOIN
CFJOIN is a new tag introduced by BlueDragon to support multi-threaded programming. The
What’s New in BlueDragon 7.1 document contains an introduction to multi-threaded program-
ming using CFTHREAD, CFJOIN and other related tags and functions, including several examples.

CFJOIN is used to wait for a thread created using the CFTHREAD tag to finish executing. CFJOIN
has a single required attribute, THREAD, which specifies the name of the thread to be joined. The
second, optional parameter, TIMEOUT, specifies the maximum time in milliseconds for the speci-
fied thread to finish executing. The THREAD name must have been specified as the NAME attribute
of a CFTHREAD tag.

4.3.11 CFMAPPING
CFMAPPING is a new tag introduced by BlueDragon to assist in creating mappings (for use with
tags like CFINCLUDE, CFMODULE, and CFC invocation) at a page- or application-level.
(BlueDragon also supports defining global mappings in the BlueDragon admin console.)

CFMAPPING requires two attributes, one of which is LOGICALPATH, and the other can be either
DIRECTORYPATH or RELATIVEPATH.

4.3.11.1 Using DirectoryPath for Absolute Paths
DIRECTORYPATH must specify a full physical path. An example that corresponds to a similar kind
of setting in the Admin console is:

<cfmapping logicalpath="/mypath" directorypath="C:\mymappedpath">

4.3.11.2 Using RelativePath for Relative Paths
The RELATIVEPATH option provides a benefit with no corresponding setting in the Admin con-
sole, in that it permits specification of a path that’s relative rather than absolute. If the
RELATIVEPATH value starts with "/", it's interpreted as being relative to the application root di-
rectory. For example:

<cfmapping logicalpath="/map1" relativepath="/WEB-INF/map1">

For BlueDragon Server JX, the application root is the web server document root; for BlueDragon
for Java EE, this the Java EE web application root; for BlueDragon.NET, this is the ASP.NET
application root.

If the RELATIVEPATH value does not start with "/", it's interpreted as being relative from the cur-
rent document directory. For example:

BlueDragon 7.1 CFML Enhancements Guide 36

<cfmapping logicalpath="/map2" relativepath="../../map2">

4.3.11.3 Other Information
All three attributes, DIRECTORYPATH, LOGICALPATH, and RELATIVEPATH accept variable ex-
pressions as well as string constants.

When the CFMAPPPING tag is rendered BlueDragon will verify that the specified DIRECTORYPATH
actually exists, is a directory (and not a file), and that BlueDragon can read from that directory. If
any of these checks fail, a CFML runtime exception will be thrown.

Mappings specified by CFMAPPING will exist for the duration of the request and survive across
CFINCLUDEs, custom tag calls, CFC method calls, etc. You can put a CFMAPPING tag in any page,
including Application.cfm.

The CFMAPPING tag will override mappings configured via the admin console.

4.3.12 CFPAUSE
CFPAUSE is a new tag introduced by BlueDragon to assist in debugging CFML pages. The
CFPAUSE tag allows you to pause the execution of a page for a specified number of seconds. The
interval attribute is required and must specify a positive integer value:

<CFPAUSE INTERVAL="seconds to pause">

The CFPAUSE tag is also useful within the body of a CFTHREAD tag to control the timing of the ex-
ecution of repetitive background tasks.

4.3.13 CFTHREAD
CFTHREAD is a new tag introduced by BlueDragon to support multi-threaded programming. The
What’s New in BlueDragon 7.1 document contains an introduction to multi-threaded program-
ming using CFTHREAD and related tags and functions, including several examples.

The following table lists the CFTHREAD tag attributes:

Attribute Description
Name Optional. A CFTHREAD tag must be given a name in order for other threads to wait for, or

“join” the CFTHREAD. See the CFJOIN tag. Specifying a NAME causes a thread variable of
that NAME to be created.

Output Optional. A boolean value, either YES/TRUE or NO/FALSE. If set to YES/TRUE, then the
GeneratedContent field of the thread variable is populated with the output of the rendered
CFTHREAD body. The default value is NO/FALSE. This attribute is ignored if the NAME at-
tribute is not specified.

AttributeCollection Optional. A CFML structure that contains the values for the Attributes scope of the
CFTHREAD tag body.

In addition to the CFTHREAD tag attributes listed above, user-defined attributes may be specified
for the CFTHREAD tag. User-defined attributes are copied to the ATTRIBUTES scope of the
CFTHREAD tag body.

BlueDragon 7.1 CFML Enhancements Guide 37

4.3.14 CFTHROTTLE
CFTHROTTLE is a new tag introduced by BlueDragon to help respond to requests that are coming
in too quickly from a given host/client. Rogue spiders, bad software etc can cripple a server with
repeated requests. This tag is designed to track such requests in a given a window of time and
give you the opportunity to deny or redirect their requests.

<CFTHROTTLE
 ACTION = "action"
 TOKEN = "name of item to track"
 HITTHRESHOLD = "number of hits"
 HITTIMEPERIOD = "time period to count hits"
 MINHITTIME = "time between each request">
... some operation
</CFTHROTTLE>

The following table lists the CFTHROTTLE tag attributes.

Attribute Description
Action Required. Available values are:

THROTTLE – Default value. Enable throttle processing
FLUSH - Flushes entire historical table of throttle processing
STATUS - Returns a CFML variable, CFTHROTTLE, which is an array of structures detailing
each item that is currently being tracked by CFTHROTTLE. Allows creation of a status page.
SET - Sets the size of the window for tracking. Defaults to 100, for the last 100 items to be
tracked; can be overridden by passing a new value using the optional HISTORY attribute.

History Optional. Used with ACTION=SET. Sets the size of the window for tracking. Defaults to 100,
for the last 100 items being tracked.

Token Optional. Used with ACTION=THROTTLE. The string used to track repeated requests. In
most instances you will track the client ip address, and this is the default if not specified. You
may choose to use the CGI.HTTP_USER_AGENT variable to track, for instance, when re-
quests from certain search engines are visiting your site too often in a given period of time.

HitThreshold Optional. Used with ACTION=THROTTLE. The maximum number of times a unique TOKEN
value can be used by requests being monitored in the time period specified by
HITTIMEPERIOD. If the number is exceeded, then the request is flagged as excessive and a
candidate to be throttled (see discussion of resulting THROTTLE scope below). Defaults to
5.

HitTimePeriod Optional. Used with ACTION=THROTTLE. The time period, expressed in milliseconds, where
if a successive number of requests (determined by HITTHRESHHOLD) are received sharing
the given TOKEN, the request will be deemed excessive. Defaults to 10000 (10 seconds).

MinHitTime Optional. Used with ACTION=THROTTLE. The time period, expressed in milliseconds, where
if successive requests (regardless of the TOKEN) are received, the request will be deemed
excessive. Defaults to 500 (one half second).

This tag does not require an end tag. CFTHROTTLE would typically be used in an
Application.cfm file to detect and enable handling of a request when it has been deemed ex-
cessive.

After using ACTION=THROTTLE a special structure, CFTHROTTLE, is returned containing a number
of variables to aid in tracking a potential rogue user. If the boolean CFTHROTTLE.THROTTLE is
TRUE, then the server has detected an excessive request that is a candidate for throttling.

BlueDragon 7.1 CFML Enhancements Guide 38

The CFTHROTTLE tag will not throttle the connection itself. Instead, it helps detect such requests,
based on the attributes described above. Code within the CFTHROTTLE tag is then processed to
handle the excessive request.

The following example illustrates a use of this tag:

<CFTHROTTLE>
<CFIF cfthrottle.throttle EQ true>
 <CFHEADER STATUSCODE="503"
 STATUSTEXT="Try backing off the time between requests">
 <H1>503 Server is very busy. Try later</H1>
 <CFABORT>
</CFIF>
<!--- continue processing --->

In this case, since all the defaults were taken for CFTHROTTLE’s attributes, it would detect if a re-
quest came from the same IP address more than 5 times in a 10 second period, or if requests
came in more often than every half second.

Other variables available in the CFTHROTTLE result structure include

- HITCOUNT - number of times the detected token has been found in requests in the
given time period

- TOTALHITS - total number of times the token has been detected throughout the
server’s life time (or since the history has been flushed)

- LASTHIT - number of milliseconds since the token was last detected

- AGE - the total time since this token has been tracked

4.3.15 CFXMLRPC
CFXMLRPC is a new tag introduced by BlueDragon to easily and quickly invoke remote XML-
RPC services:

<CFXMLRPC
 SERVER = "url of server"
 METHOD = "method name"
 PARAMS = "array of params">

Note that if you’re intending to invoke remote Web Services, you should use the CFINVOKE tag
(or CFOBJECT/createObject) instead. More information on XMLRPC can be found in the fol-
lowing resources:

http://www.xml-rpc.com/

http://weblog.masukomi.org/writings/xml-rpc_vs_soap.htm

http://www.oreilly.com/catalog/progxmlrpc/chapter/ch03.html

The following table lists the CFXMRPC tag attributes.

BlueDragon 7.1 CFML Enhancements Guide 39

Attribute Description
Server Required. The full URL to the XML-RPC server

Method Required. The method you wish to invoke on at the given SERVER

Params Required. A CFML Array containing all the parameters for the given METHOD. All complex
types will be converted to the types laid out in the XML-RPC specification.

This tag does not require an end tag.

Upon completion, CFXMLRPC will create a variable, XMLRPC, as a structure with at least 1 key,
SUCCESS. If the operation was successful, then SUCCESS will be set to TRUE and the RESULT key
will contain a CFML structure of the data that was returned. If the operation was unsuccessful,
SUCCESS will be set to FALSE, with ERROR reporting the error message.

The following example illustrates calling an XML-RPC server:

<CFXMLRPC SERVER="http://servername/filename.ext" METHOD="methodname"
PARAMS="#myarray#">

CFXMLRPC relies on the underlying (and provided) Apache XML-RPC library.

4.3.16 CFZIP and CFZIPPARAM
CFZIP is a new tag introduced by BlueDragon to assist in creating, extracting, and listing the
contents of compressed (zip) files. The optional CFZIPPARAM can be used as described in the next
section.

CFZIP ACTION=”create” will create a zip file comprised either of the file/files named in the
SOURCE attribute of CFZIP, or those named in the SOURCE attribute of the optional CFZIPPARAM
(multiple CFZIPPARAMs are permitted).

CFZIP ACTION=”extract” will extract the zip file contents to the named DESTINATION direc-
tory.

CFZIP ACTION=”list” will return a VARIABLE with a query resultset representing the zipfile
contents (similar to that returned by CFDIRECTORY).

The following table lists the CFZIP tag attributes.

Attribute Description
ZipFile Required. The name of the zipfile to create, extract, or list.

Source Required if ACTION=CREATE. The path to a file, or directory in which to find files, to be
added to the zipfile. (To name multiple directories or files, use CFZIPPARAM.)

Action Optional. The action to be taken by the CFZIP tag. The value CREATE creates a zip file from
the file(s) specified by the source attribute. The value of EXTRACT extracts a file(s) from
a zipfile to the named DESTINATION. The value of LIST creates a query resultset describing
the contents of the zip file. Defaults to CREATE.

Recurse Optional. Used with ACTION=CREATE. Indicates whether the subdirectories in the SOURCE
directory be included. Defaults to YES.

BlueDragon 7.1 CFML Enhancements Guide 40

Filter Optional. Used with ACTION=CREATE. Specify a filter for the given SOURCE directory e.g.
*.gif (similar to the cfdirectory filter attribute)

Timeout Optional. Used with ACTION=CREATE or EXTRACT. An exception will be thrown if the time
taken to create/extract the zipfile exceeds this. Defaults to 60 seconds.

CompressionLevel Optional. Used with ACTION=CREATE. A numeric in the range 0-9 (inclusive) that specifies
the level of compression with 0 meaning no compression and 9 being the maximum. Defaults
to 8.

NewPath Optional. Used with ACTION=CREATE. If the item specified in SOURCE is a file then this
attribute can be used to specify a replacement path. If the SOURCE item is a directory then
this is ignored.

Prefix Optional. Used with ACTION=CREATE. A prefix that will be prepended to the path of files in
the created zipfile

Variable Required if ACTION=LIST. Ignored for other actions. The name of the variable where the
result of the zipfile contents listing will appear (as a query result set)

Destination Required if ACTION=EXTRACT. Ignored for other actions. The directory to which the zip file
will be extracted.

Flatten Optional. Used with ACTION=EXTRACT. Whether the directory structure of the zip file will be
maintained in the directory to which the zipfile contents are extracted. Defaults to YES.

An example of listing the contents of a zip file is:

<cfzip action="list" zipfile="sourcepath\somefile.zip"
variable="somevar">

 <cfdump var="#x#">

An example of extracting a zip file is:

<cfzip action="extract" zipfile="soourcepath\somefile.zip"
destination="destpath">

The CFZIPPARAM tag can be used to embed references to multiple files/directories during the
process of creating a zip file. It is to be used only with CFZIP ACTION=”create”. The following
table lists the CFZIPPARAM tag attributes.

Attribute Description
Source Required. The path to a file, or directory in which to find files, to be added to the zipfile

Recurse Optional. Indicates whether the subdirectories in the SOURCE directory be included. Defaults
to YES.

Filter Optional. Used with ACTION=CREATE. Specify a filter for the given SOURCE directory e.g.
*.gif (similar to the cfdirectory filter attribute)

NewPath Optional. If the item specified in SOURCE is a file then this attribute can be used to specify a
replacement path. If the SOURCE item is a directory then this is ignored.

Prefix Optional. A prefix that will be prepended to the path of files in the created zipfile

BlueDragon 7.1 CFML Enhancements Guide 41

CFML Functions

4.4 Enhanced CFML Functions
This section lists CFML function enhancements that are unique to BlueDragon.

4.4.1 CreateObject
See the discussion under CFOBJECT in section 4.2.15, for information on a new type value of
.net, which is supported only on BlueDragon for the Microsoft .NET Framework.

4.4.2 ListToArray
BlueDragon adds a new third argument to ListToArray(), a boolean value, which determines
whether to include empty list elements in the resulting array. The default is no, which causes it to
operate consistently with ColdFusion.

Consider the following:

<cfset list = "1,2,,3">
<cfdump var="#listToArray(list,",")#">

Both ColdFusion and BlueDragon would return an array of 3 elements, even though there are 4
items in the list, the third of which is empty. Use the newly available third argument to change
this behavior:

<cfset list = "1,2,,3">
<cfdump var="#listToArray(list,",","yes")#">

This creates instead an array of 4 elements, with the third being empty.

4.4.3 ParagraphFormat
From the CFML Reference for CF5:

“Returns string with converted single newline characters (CR/LF sequences) into spaces
and double newline characters into HTML paragraph markers (<p>).”

BlueDragon varies from this behavior in that it converts single newline characters into HTML
break tags (
) instead of spaces. Double newline characters are converted into HTML para-
graph markers (<p>) by both BlueDragon and CF5.

4.4.4 StructNew
BlueDragon has enhanced the StructNew() function to accept an optional argument, a boolean,
indicating whether to create a structure allowing case-sensitive keynames. The default is false, in
which case BlueDragon internally normalizes structure keys to lowercase.

Generally, the case of structure keynames is not important and shouldn’t be relied upon. Indeed,
if you have code that relies upon the current default behavior of normalizing lower-case, you
should use caution when implementing this enhancement as it may break that code.

BlueDragon 7.1 CFML Enhancements Guide 42

There are situations, however, where the case of keynames is important. For instance, see the
discussion of the enhancement to XMLTransform(), in section 4.4.7.

Finally, note that there are some cases where structures created by internal processes are already
case-sensitive. For instance, in XML tag and function processing, the keynames created from
XML elements are case sensitive.

4.4.5 XMLSearch
XmlSearch() uses XPath expressions to extract data from an XML document. In CFMX, the re-
sult is an array of XML document objects containing the elements that meet the expression crite-
ria. BlueDragon additionally supports execution of any other type of XPath statement that may
return a boolean, string, or number type as a result.

4.4.6 XMLParse
BlueDragon offers additional functionality with respect to case sensitivity, node processing, and
array handling. See section 5.7 for more information.

4.4.7 XMLTransform
BlueDragon adds the ability to pass arguments to an XML transformation by way of a new op-
tional third argument to XMLTransform(). The value of the argument is a structure, whose keys
are used to substitute values in any XSLT param elements that may be found in the XSLT speci-
fied in the second argument. An example of these param elements is <xsl:param

name="keyname"></xsl:param>. For more information on using these substitutable parameters,
consult an XSLT reference.

Be aware that by default, BlueDragon normalizes structure keynames to lower case, which could
compromise the ability to match XSLT param elements. To address this issue, an enhancement
has been made to the StructNew function. See the documentation in section 4.4.4.

Additionally, the key values in the structure that’s passed to the transformation can be any valid
java datatype or object. Normally they'll be strings, but if you want to use XALAN extensions
and need to pass a real object, we permit that and do not convert it to a string automatically (the
XALAN engine, which is the underlying XML/XSLT engine, does this where appropriate).

4.5 New CFML Functions
This section lists new CFML functions that are unique to BlueDragon.

4.5.1 Assert
BlueDragon has added an Assert() function to CFML. See the discussion of CFASSERT for
more information. The Assert() function takes as its only argument the expression to be tested,
as in:

<CFSCRIPT>
 Assert(somevar is somevalue);
</CFSCRIPT>

BlueDragon 7.1 CFML Enhancements Guide 43

4.5.2 GetAllThreads
GetAllThreads() is a new function introduced by BlueDragon to support multi-threaded pro-
gramming. The What’s New in BlueDragon 7.1 document contains an introduction to multi-
threaded programming using CFTHREAD and related tags and functions, including several exam-
ples.

GetAllThreads() returns an array of thread variables representing all actively running threads
created using the CFTHREAD tag. The thread variables within the array can be passed as parame-
ters to other thread-related functions, such as ThreadInterrupt(), ThreadIsAlive(),
ThreadJoin(), ThreadRunningTime(), and ThreadStop().

GetAllThreads() does not take any parameters.

4.5.3 GetHttpContext
For BlueDragon.NET only, returns the ASP.NET System.Web.HttpContext object associated
with the currently executing request. For instance, to view the machine name for the current
server, run the following code:

<cfset svr = gethttpcontext().get_server()>
<cfoutput>#svr.get_machinename()#</cfoutput>

For more information on the HttpContext object, including its many properties including
Server, Request, Response, and more, see:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemwebhttpcontextclassservertopic.asp

For more information on calling .NET objects in general (including the use of the get_ syntax
used in the example), see the manual, Integrating CFML with ASP.NET and the Microsoft .NET
Framework.

4.5.4 IsNull
See Section 5.1 for a discussion of the “null” keyword and IsNull() function.

4.5.5 ListRemoveDuplicates
BlueDragon has added a ListRemoveDuplicates() function to CFML. It removes any duplicate
elements in a given list. There is no return value. The syntax is as follows:

 ListRemoveDuplicates(query [, separator])

The function accepts an optional second argument describing the list separator, which defaults to
a comma(,).

An example of usage is:

<cfset list = "1,2,3,3">
<cfdump var="#listRemoveDuplicates(list)#">

BlueDragon 7.1 CFML Enhancements Guide 44

4.5.6 ThreadInterrupt
ThreadInterrupt() is a new function introduced by BlueDragon to support multi-threaded
programming. The What’s New in BlueDragon 7.1 document contains an introduction to multi-
threaded programming using CFTHREAD and related tags and functions, including several exam-
ples.

ThreadInterrupt() allows you to interrupt, or “wake up” a thread that is paused as the result
of rendering the CFPAUSE tag. This function takes a single parameter, which must be a thread va-
riable, and does not return any value. Thread variables for all actively running threads can be re-
trieved using the GetAllThreads() function.

4.5.7 ThreadIsAlive
ThreadIsAlive() is a new function introduced by BlueDragon to support multi-threaded pro-
gramming. The What’s New in BlueDragon 7.1 document contains an introduction to multi-
threaded programming using CFTHREAD and related tags and functions, including several exam-
ples.

ThreadIsAlive() returns a boolean indicating whether the specified thread is still running. This
function takes a single required parameter, which must be a thread variable. Thread variables for
all actively running threads can be retrieved using the GetAllThreads() function.

4.5.8 ThreadJoin
ThreadJoin() is a new function introduced by BlueDragon to support multi-threaded pro-
gramming. The What’s New in BlueDragon 7.1 document contains an introduction to multi-
threaded programming using CFTHREAD and related tags and functions, including several exam-
ples.

ThreadJoin() causes the current thread to wait for the specified thread to complete executing.
The first parameter, which is required, is a thread variable of the thread to be joined. The second
parameter, which is optional, is the timeout value in milliseconds.

4.5.9 ThreadRunningTime
ThreadRunningTime() is a new function introduced by BlueDragon to support multi-threaded
programming. The What’s New in BlueDragon 7.1 document contains an introduction to multi-
threaded programming using CFTHREAD and related tags and functions, including several exam-
ples.

ThreadRunningTime() returns the time in milliseconds that the specified thread has been run-
ning. This function takes a single required parameter, which must be a thread variable. Thread
variables for all actively running threads can be retrieved using the GetAllThreads() function.

4.5.10 ThreadStop
ThreadsStop() is a new function introduced by BlueDragon to support multi-threaded pro-
gramming. The What’s New in BlueDragon 7.1 document contains an introduction to multi-
threaded programming using CFTHREAD and related tags and functions, including several exam-
ples.

BlueDragon 7.1 CFML Enhancements Guide 45

ThreadStop() halts the execution of the specified thread. This function takes a single required
parameter, which must be a thread variable. Thread variables for all actively running threads can
be retrieved using the GetAllThreads() function.

ThreadStop() runs asynchronously. If it is important that the thread be stopped before any fur-
ther processing is done in the page that call ThreadStop(), either ThreadJoin() or CFJOIN
should be used immediately after ThreadStop().

4.5.11 QueryDeleteRow
BlueDragon has added a QueryDeleteRow() function to CFML. It deletes a given row from a
query resultset. There is no return value. The syntax is as follows:

 QueryDeleteRow(query, rowNumberToDelete)

The second argument refers to the row number within the query result set, not any internal data-
base record id. An example of usage is:

<CFSET Query = QueryNew("id,name,age")>
<CFLOOP INDEX="X" FROM=1 TO=8>
 <CFSET QueryAddRow(Query,1)>
 <CFSET QuerySetCell(Query,"ID",X,X)>
 <CFSET QuerySetCell(Query,"Name","Name #X#",X)>
 <CFSET QuerySetCell(Query,"Age",X+15,X)>
</CFLOOP>

Before deleting:
<CFDUMP VAR="#Query#">

<cfset QueryDeleteRow(Query, 8)>
After deleting:
<CFDUMP VAR="#Query#">

4.5.12 QuerySort
BlueDragon has added a QuerySort() function to CFML. It sorts a given query resultset accord-
ing to provided sort arguments. There is no return value. The syntax is as follows:

 QuerySort(query, column, sorttype, direction)

The following table lists the QuerySort arguments.

Argument Description
Query Required. The CFML query resultset to be sorted (could be from a CFQUERY or tags like

CFDIRECTORY, CFPOP, CFZIP, etc.)

Column Required. The query column to be used for sorting the query result set.

SortType Required. The type of sort to perform. That values can be TEXT, NUMERIC, or
TEXTNOCASE.

Direction Optional. Indicates the sort order, which can be ASC or DESC. Defaults to ASC.

An example of usage is the following:

BlueDragon 7.1 CFML Enhancements Guide 46

 <CFDIRECTORY ACTION="LIST" DIRECTORY="c:\" NAME="tests">
 <CFSET QuerySort(tests,"name","TEXT","DESC")>
 <CFDUMP VAR=”#tests#”>

4.5.13 Render
BlueDragon has added a Render function, which will dynamically render (execute) the CFML
within any variable. This solves a long-standing problem where developers have wished to store
CFML in a database column, for example, and then later process it.

While it may seem like a CFINCLUDE, it’s much more powerful and by designing it as a func-
tion it’s more flexible, in that the results can more easily be processed (or ignored).

Examples include the following:

<cfoutput>#Render(someQuery.cfmlContent)#</cfoutput>

<cfscript>
writeOutput(Render(someQuery.cfmlContent));
</cfscript>

<cfset render(somecfmlcontent)>

As with a CFINCLUDE, any CFML in the variable is processed just as if it was running in the
template that called it. Any variables set inside this CFML will be available to the calling tem-
plate, and path names for custom-tags and CFINCLUDE's will be relative to the calling template.

BlueDragon 7.1 CFML Enhancements Guide 47

5 Miscellaneous Enhancements
There are various other aspects of working with ColdFusion and CFML that may be slightly dif-
ferent in BlueDragon, but don’t fit neatly into a discussion of tags or functions.

5.1 “null” keyword and IsNull() function
BlueDragon 7.0 introduced the concept of null variables in CFML via the “null” keyword and
IsNull() function. There are several uses for these: (1) checking to see if a value returned by a
database is null versus an empty string; (2) passing null values to Java object methods without
using JavaCast; (3) checking for null values returned by Java object method calls; and, (4) re-
turning null values from CFC function calls where the return type is specified to be a CFC.

5.1.1 Database nulls
Prior to BlueDragon 7.0, null values returned from a database were treated as empty strings; and,
in BlueDragon 7.0 you can continue to treat them as empty strings for backwards compatibility
with existing code. However, you now have the option of explicitly checking for null values re-
turned from a database. A simple example demonstrates this:

 <!--- get all employees whose email address is null --->
 <cfquery datasource="cfsnippets" name="employees">
 SELECT * FROM Employees
 WHERE Email IS NULL
 </cfquery>

 <cfif employees.Email eq "">
 <h3>Yes, employees.Email equals empty string</h3>
 </cfif>

 <cfif employees.Email eq null>
 <h3>Yes, employees.Email is null</h3>
 </cfif>

 <cfif isNull(employees.Email)>
 <h3>Yes, employees.Email is still null</h3>
 </cfif>

5.1.2 Java Methods
Many Java methods allow you to pass null values as parameters. For example, the
java.io.File.createTempFile() method takes three parameters: prefix, suffix, and directory.
The last two parameters may be null, in which case the default suffix (“.tmp”) and default direc-
tory are used. Prior to BlueDragon 7.0 you were required to use the JavaCast method to pass null
values to Java methods; with BlueDragon 7.0 you can now simply use the “null” keyword.

 <cfset f = createObject("java", "java.io.File")>

 <!--- old way, using JavaCast (still works in BD 7.0) --->
 <cfset tempFile = f.createTempFile("test", JavaCast("null", ""),
 JavaCast("null", ""))>

 <!--- new way, using "null" keyword, BD 7.0 only --->

BlueDragon 7.1 CFML Enhancements Guide 48

 <cfset tempFile = f.createTempFile("test", null, null)>

Similarly, many Java methods will return null under certain circumstances. For example, the
java.io.File.getParentFile() method returns null if the specified path does not have a par-
ent. In CFMX, if the return value of a Java method is assigned to a CFML variable, the result is
that the variable becomes undefined, even if it was defined previously. For example, consider the
following code:

 <cfset parentFile="initial value">
 <cfset testFile=createObject("java","java.io.File").init("C:\")>

 <!--- returns null because "C:\" doesn’t have a parent --->
 <cfset parentFile=testFile.getParentFile()>

At this point, if you tried to output the value of “parentFile” in CFMX you’d get an “undefined
variable” exception, which might seem a little strange since “parentFile” was created and as-
signed a value in the first CFSET tag.

In BlueDragon 7.0, “parentFile” gets assigned the value “null”, which you can test for using the
IsNull() function:

 <cfif isNull(parentFile)>
 parent file is null
 </cfif>

These may be trivial examples, but if you write a lot of code that call Java methods you’ll find
numerous examples where these issues become more critical. Support for the “null” keyword and
IsNull() function allow you to interact with Java (and .NET) methods in a more natural man-
ner.

5.1.3 CFC Functions
Just as there are Java methods that accept null values as parameters and return null values, there
are many cases where it makes sense to write CFC functions that do the same. Prior to Blue-
Dragon 7.0, however, there was no way to do this. If you specify a CFC as the TYPE attribute for
a CFARGUMENT tag, or as the RETURNTYPE attribute for a CFFUNCTION tag, there’s no simple, con-
venient way to specify a null value for an argument, or return a null value from a function.

Consider the following CFC named “Employee”. This CFC implements a single function, “init”
that takes an employee ID as a parameter (you can easily imagine additional functions to retrieve
the employee data and otherwise manipulate an Employee instance). The init function uses the
employee ID to look up the employee data in the company database and return an Employee in-
stance populated with the data. The RETURNTYPE of the init function is specified as “Employee”;
that is, it returns a CFC of type “Employee.”

But what happens if the employee specified by the employee ID doesn’t exist? Prior to Blue-
Dragon 7.0 there really were no good solutions. But, now the answer is simple: return null from
the init function, and have the caller check for a null return value using the IsNull() function.
Here’s the CFC:

BlueDragon 7.1 CFML Enhancements Guide 49

 <cfcomponent name="Employee" output="false">

 <cffunction name="init" returntype="Employee" output="false">
 <cfargument name="empID" type="numeric" required="true">

 <cfquery datasource="cfsnippets" name="employee">
 SELECT * FROM Employees
 WHERE EmpID = <cfqueryparam cfsqltype="cf_sql_integer"
 value="#arguments.empID#">
 </cfquery>

 <cfif employee.recordCount eq 0>
 <!--- the employee doesn’t exist, so return null --->
 <cfreturn null>
 <cfelse>
 <!--- populate and return this instance --->
 <cfset this.empID = employee.empID>
 <cfset this.FirstName = employee.FirstName>
 <cfset this.LastName = employee.LastName>
 <cfset this.Email = employee.Email>
 <cfset this.Phone = employee.Phone>
 <cfset this.Department = employee.Department>

 <cfreturn this>
 </cfif>
 </cffunction>
 </cfcomponent>

And here’s how a caller would invoke the init method and use the IsNull() function to check
for a valid Employee instance:

 <cfset empID=1>

 <cfset employee=createObject("component","Employee").init(empID)>
 <cfif isNull(employee)>
 Employee <cfoutput>#empID#</cfoutput> does not exist
 </cfif>

Support for null in BlueDragon 7.0 provides a simple, elegant way to solve to these types of pro-
gramming problems.

5.2 Application.cfc
The Application.cfc component was introduced in CFMX 7 as an enhancement and replace-
ment for Application.cfm and OnRequestEnd.cfm. The CFMX 7 Application.cfc imple-
ments the following event handlers: onApplicationStart(), onApplicationEnd(),
onSessionStart(), onSessionEnd(), onRequestStart(), onRequestEnd(), onRequest(),
and onError(). The BlueDragon 7.0 implementation of Application.cfc is compatible with
CFMX 7, with the addition of two new event handlers, described below.

5.2.1 onClientStart() Event Handler
The new onClientStart() event handler introduced by BlueDragon 7.0 is invoked whenever a
new client session is created. It has the following signature:

BlueDragon 7.1 CFML Enhancements Guide 50

 <cffunction name="onClientStart" returntype="void">
 </cffunction>

Use the onClientStart() event handler to initialize Client scope variables.

5.2.2 onMissingTemplate() Event Handler
The new onMissingTemplate() event handler introduced by BlueDragon 7.0 is invoked when-
ever BlueDragon encounters a file-not-found condition. The search for the Application.cfc
file starts in the physical directory represented by the request URI, and proceeds up the parent
directories in the normal fashion. The signature of the onMissingTemplate() event handler is:

 <cffunction name="onMissingTemplate" returnType="boolean">
 <cfargument type="String" name="targetPage" required="true">
 <cfreturn true>
 </cffunction>

Return "true" to indicate that the event has been processed; return "false" to indicate that the
event has not been processed. In the latter case, BlueDragon continues with its normal file-not-
found processing, including rendering the site-wide Missing Template Handler (if configured) or
returning a 404 file-not-found error page to the browser. You do not have to explicitly return true
if you omit the returntype attribute.

Prior to invoking the onMissingTemplate method, the Application.cfc pseudo-constructor is
rendered, but the application and session are not started, so those scopes and the client scope are
not available. The remaining scopes--Request, URL, Form, CGI, Server, etc.--are all available
within the onMissingTemplate handler.

The onApplicationStart, onSessionStart, onRequestStart, onRequest, and
onRequestEnd handlers are not invoked, and processing of the request terminates when the
onMissingTemplate handler returns. If an error occurs within the onMissingTemplate handler,
the onError handler is not invoked; however, the site-wide Default Error Handler is invoked (if
configured).

5.3 Application.cfm
BlueDragon offers an enhancement whereby if a URL requests a file that does not exist,
Application.cfm is still processed before rejecting the request as a file not found, so that
processing can take place that redirects based on the requested URL. This has an important ad-
vantage over CFMX, especially in the way of creating search-engine safe URLs or otherwise
hiding the technology behind your site.

As an example, the sites Blog-City.com and LinuxWorld.com both use URLs such as the fol-
lowing to request CFML-driven pages. Notice that it’s a request for an HTM file:

 http://bluedragon.blog-city.com/read/789800.htm

In this case, the file 789800.htm doesn't physically exist. The only file in the read directory is
Application.cfm. When that request is processed, BlueDragon runs the Application.cfm
which in their code then parses the cgi.script-name looking for the filename ('789800')

BlueDragon 7.1 CFML Enhancements Guide 51

and then makes a decision on that (such as pulling a record from a database or such), and then
they render the template. At the end of Application.cfm processing, they call <CFABORT> to pre-
vent the user getting a “file not found” error.

Using this technique, they can create very clean URLs without having to resort to complicated
REWRITE rules in their web server. Also, using this technique allows them to code to a Model-
View-Controller (MVC) paradigm more effectively, with the Application.cfm file being the
controller.

5.4 Option to Support Relative Paths in Tags Requiring Absolute
There are a number of CFML tags that manipulate the file system via the file attribute. In
ColdFusion, you must specify a full file system path for the file attribute for these tags:

CFCONTENT
CFDIRECTORY
CFEXECUTE
CFFILE

 CFFTP
CFHTTP

 CFIMAGE
 CFMAILPARAM
 CFPOP
 CFSCHEDULE

BlueDragon adds an optional URIDirectory attribute to these tags to indicate whether the file
attribute specifies a full file system path or a URI path that is relative to the web server’s docu-
ment root directory. For example, the following tags would produce the same result on Microsoft
IIS:

<CFFILE ACTION=”delete” FILE=”C:\Inetpub\wwwroot\images\a.jpg”>

<CFFILE ACTION=”delete” FILE=”/images/a.jpg” URIDIRECTORY=”Yes”>

Specifying file attributes as relative URI paths improves the portability of CFML pages by eli-
minating web server and operating system specific physical path specifications. Note that if the
code above was moved to a Linux running Apache, the first tag is not portable, but the second
one is.

The optional URIDirectory attribute accepts the values “Yes” and “No”; the default value is
“No”.

5.5 Integrating JSP/Servlets Alongside CFML Templates
BlueDragon Server JX and BlueDragon for Java EE both allow you to execute JSPs and servlets
alongside your CFML templates, as well as integrate your CFML with those and other Java
components. ColdFusion MX requires the Enterprise edition for the same capability. For more
information on CFML/Java integration, see the BlueDragon 7.1 User Guide.

BlueDragon 7.1 CFML Enhancements Guide 52

5.6 Integrating ASP.NET Alongside CFML Templates
With BlueDragon for the Microsoft .NET Framework, you can run ASP.NET pages alongside
your CFML templates (because the .NET framework knows how to process them), as well as
integrate your CFML with those and other .NET components. In the .NET edition, BlueDragon
adds even more integration features than where ever possible in the Java editions of BlueDragon
and ColdFusion. For more information on ASP.NET integration, see Integrating CFML with
ASP.NET and the Microsoft .NET Framework.

5.7 XML Handling
There are a few ways in which BlueDragon supports XML in enhanced ways over ColdFusion.
Rather than point these out with respect to particular tags or functions, this section introduces
these enhancements.

5.7.1 Case Sensitivity
XML case sensitivity is an optional parameter that can be passed to <cfxml> and XMLparse().
The created XML object then requires case sensitive treatment when accessing nodes.

CFMX won't allow you to access an XML object using dot notation when you create it using the
case sensitive option, even if you use proper case. The error returned indicates that CFMX is up-
percasing the dot notated name, complaining that it cannot find the uppercased value in the XML
object. It won't find it when comparing on a case sensitive basis. This operation is contrary to the
ColdFusion documentation.

More specifically, in CFMX, using case sensitive XML objects forces you to use
myDoc["Root"]["FirstNode"] notation. CFMX uppercases all their nodes so you cannot use
normal dot notation when case sensitivity is turned on. In BlueDragon, we support both bracket
and dot notation with case sensitive and case insensitive XML objects.

5.7.2 Assignment of New Nodes
CFMX does not allow adding nodes via assignment unless both the LHS (left hand side) node
name and RHS node name are identical. BlueDragon does. In the event of a mismatch, Blue-
Dragon lets the RHS node name be the name of the appended node.

For example, the following works in BlueDragon but fails in CFMX because the node names
don't match up.

 myDoc.Root.SubNode = XmlElemNew(myDoc, "WrongNode")

BlueDragon allows the RHS node name to take precedence.

In addition, the following fails in CFMX when there is only 1 SubNode element child of Root.

 myDoc.Root.SubNode[2] = XmlElemNew(myDoc, "SubNode")

This is allowed in BlueDragon.

BlueDragon 7.1 CFML Enhancements Guide 53

5.7.3 XML Array Processing
There are some instances in CFMX where an XML node cannot be treated as an array in array
processing functions. For example, the following works in CFMX:

 ArrayClear(myDoc.Root.SubNode)

But the following does not:

 ArrayInsertAt(myDoc.Root.SubNode,1,XmlElemNew(myDoc,"SubNode"))

In BlueDragon, a node with even one element can be processed by the array functions.

5.8 Whitespace Compression
BlueDragon’s whitespace suppression is more thorough than ColdFusion’s, which can reduce the
bandwidth required to send pages to clients. See the discussion in section 4.2.17 as well as in the
BlueDragon 7.1 CFML Compatibility Guide.

5.9 Error handling enhancements
BlueDragon offers various enhancements with regard to error handling and logging, as discussed
in the section above on CFERROR as well as the section “Resolving CFML Compatibility Errors”
in the BlueDragon 7.1 CFML Compatibility Guide.

	1 Introduction
	1.1 About This Manual
	1.2 BlueDragon Product Configurations
	1.3 Technical Support
	1.4 Additional Documentation

	2 Overview of Enhancements
	2.1 Enhanced Features in BlueDragon

	3 CFML Variables
	3.1 SERVER Variables

	4 CFML Tags
	4.1 Enhancements Regarding ColdFusion Components (CFCs)
	4.2 Enhanced CFML Tags
	4.2.1 CFCOMPONENT
	4.2.1.1 Abstract CFCs
	4.2.1.2 CFC Interfaces

	4.2.2 CFCOLLECTION
	4.2.3 CFHART
	4.2.3.1 CFCHARTSERIES
	4.2.3.2 CFCHARTRANGEMARKER
	4.2.3.3 CFCHARTDOMAINMARKER
	4.2.3.4 CFCHARTLEGEND
	4.2.3.5 CFHARTTITLE
	4.2.3.6 CFCHARTIMAGE

	4.2.4 CFDOCUMENT
	4.2.4.1 FORMAT attribute values “png” and “jpg”
	4.2.4.2 UNIT attribute value “px”
	4.2.4.3 TIMEOUT attribute
	4.2.4.4 WATERMARK and WATERMARKIMAGE attributes
	4.2.4.5 AUTHOR, SUBJECT, TITLE, and KEYWORDS attributes

	4.2.5 CFDUMP
	4.2.5.1 AutoExpansion of Nested Structures and Arrays
	4.2.5.2 VAR is Optional, Automatic Dump of Several Scopes
	4.2.5.3 Additional Information Offered in Dump of Queries
	4.2.5.4 Available VERSION Attribute to Expand Queries and XML

	4.2.6 CFERROR, CFTRY/CFCATCH, and try/catch
	4.2.7 CFFLUSH
	4.2.8 CFFUNCTION
	4.2.9 CFINCLUDE
	4.2.10 CFINDEX
	4.2.10.1 Spidering a Web Site
	4.2.10.2 Asynchronous Index Processing

	4.2.11 CFINVOKE
	4.2.12 CFLOCATION
	4.2.13 CFMAIL
	4.2.14 CFMAILPARAM
	4.2.15 CFOBJECT
	4.2.16 CFOBJECTCACHE
	4.2.17 CFPROCPARAM
	4.2.18 CFQUERY
	4.2.18.1 CACHEDUNTILCHANGE Attribute
	4.2.18.2 BACKGROUND Attribute
	4.2.18.3 DSN-less Connections Supported in .NET Edition
	4.2.18.4 Query Caching Enhancements
	4.2.18.5 Query ExecutionTime Variable
	4.2.18.6 PRESERVESINGLEQUOTES Attribute

	4.2.19 CFQUERYPARAM
	4.2.20 CFSEARCH
	4.2.21 CFSET (Multi-dimensional arrays)
	4.2.22 CFXML

	4.3 New CFML Tags
	4.3.1 CFASSERT
	4.3.1.1 Understanding Assertions
	4.3.1.2 Controlled By Admin Console Setting

	4.3.2 CFBASE
	4.3.3 CFCACHECONTENT
	4.3.3.1 Database Persistence of Cached Data

	4.3.4 CFCONTINUE
	4.3.5 CFDEBUGGER
	4.3.6 CFFORWARD
	4.3.7 CFIMAGE
	4.3.8 CFIMAP
	4.3.8.1 Opening a Connection
	4.3.8.2 Closing a Connection
	4.3.8.3 Listing Mailbox SubFolders
	4.3.8.4 Listing All Mailbox Folders
	4.3.8.5 Listing Mail Messages
	4.3.8.6 Reading a Mail Message
	4.3.8.7 Marking Mail Messages as “Read”
	4.3.8.8 Deleting Mail Messages
	4.3.8.9 Setting Message Flags
	4.3.8.10 Moving Mail Messages between Folders
	4.3.8.11 Creating a Folder
	4.3.8.12 Deleting a Folder
	4.3.8.13 Renaming a Folder
	4.3.8.14 Sending Mail Messages

	4.3.9 CFINTERRUPT
	4.3.10 CFJOIN
	4.3.11 CFMAPPING
	4.3.11.1 Using DirectoryPath for Absolute Paths
	4.3.11.2 Using RelativePath for Relative Paths
	4.3.11.3 Other Information

	4.3.12 CFPAUSE
	4.3.13 CFTHREAD
	4.3.14 CFTHROTTLE
	4.3.15 CFXMLRPC
	4.3.16 CFZIP and CFZIPPARAM

	CFML Functions
	4.4 Enhanced CFML Functions
	4.4.1 CreateObject
	4.4.2 ListToArray
	4.4.3 ParagraphFormat
	4.4.4 StructNew
	4.4.5 XMLSearch
	4.4.6 XMLParse
	4.4.7 XMLTransform

	4.5 New CFML Functions
	4.5.1 Assert
	4.5.2 GetAllThreads
	4.5.3 GetHttpContext
	4.5.4 IsNull
	4.5.5 ListRemoveDuplicates
	4.5.6 ThreadInterrupt
	4.5.7 ThreadIsAlive
	4.5.8 ThreadJoin
	4.5.9 ThreadRunningTime
	4.5.10 ThreadStop
	4.5.11 QueryDeleteRow
	4.5.12 QuerySort
	4.5.13 Render

	5 Miscellaneous Enhancements
	5.1 “null” keyword and IsNull() function
	5.1.1 Database nulls
	5.1.2 Java Methods
	5.1.3 CFC Functions

	5.2 Application.cfc
	5.2.1 onClientStart() Event Handler
	5.2.2 onMissingTemplate() Event Handler

	5.3 Application.cfm
	5.4 Option to Support Relative Paths in Tags Requiring Absolute
	5.5 Integrating JSP/Servlets Alongside CFML Templates
	5.6 Integrating ASP.NET Alongside CFML Templates
	5.7 XML Handling
	5.7.1 Case Sensitivity
	5.7.2 Assignment of New Nodes
	5.7.3 XML Array Processing

	5.8 Whitespace Compression
	5.9 Error handling enhancements

